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FOREWORD 

This report was  prepared  by  the Design Criteria Branch, Materials Laboratrry, 
Directorate of Laboratories, Wright Air Development Division,     Preparation 
of  the report was initiuted under Project No.7301»   "Materials Application," 
Task No.   73512,   "Data  Collection and Correlation,"  with Sidney Allinikov act- 
ing as project engineer. 

The compilation of  papers  presented herein represent a significant effort 
in  the development of  design data applicable  to  cylindrical sandwich  constructions. 
The purpose of this report is  to provide wide distribution of  these particular 
papers, which has  not  been done  previously. 
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ABbTRACT 

This report  is a  compilation of papers which present  a comprehensive 
treatment  of   the  theories and parameters associated with  the design of 
cylindrical  sandwich constructions.    Many of   the formulas developed are 
applicable  to a wide variety of core and facing combinations.     Experimental 
data on flat and curved   sandwich sections are furnished to  support  the 
theoretical   solutions related to  the  design  of  these  structures. 

PUBLICATION RiVIEW 

This  report  has been  reviewed and is  approved. 

FOB THi, cm-ummt 

A. ämm 
Chief,  Design Criteria  Branch 
Applications Division 
Materials Laboratory 
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TICiv I 

ELASTIC STABILITY OF CYLINDRICAL SANDWICH 

SHELLS UNDER AXIAL AND LATERAL LOADI 

By 

EVERETT EUGENE HAFT,   Engineer 

Forest Products  Laboratory,— Forest Service 
U.   S.   Department of Agriculture 

Summary 

A linear solution for the determination of the loads under which 

a cylindrical sandwich shell will buckle is  presented.     The facings of 

the sandwich cylinder are treated as cylindrical shells and the core as 

an orthotropic  elastic body.     The method of solution is  of interest in that 

it is  of sufficient generality to be applied to many problems in sandv/ich 

analysis.     The characteristic determinant that represents the solution to 

the problem is  solved numerically.     Curves that show how the buckling 

load changes as the parameters of the problem change are given. 

—This report is  one of a series prepared by the Forest Products Laboratory 
under U.   S.   Navy,   Bureau of Aeronautics  Order No.    01593. 

—Maintained at Madison,   Wis. ,   in cooperation with the University of 
Wisconsin. 

Kaauscript released 23 February '-'yöC for  publicatica as a UAQD Technical 
Kepcrt. 
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Introduction 

Sandwich construction is a result of the search for a strong,   stiff, 

and yet light wright material.    It is usually made by gluing relatively 

thin sheets of a strong material to the faces of relatively thick but 

light weight,   and often weak,   material.     The outer sheets are called 

"facings" and the inner layer is called the "core." 

Such a layered system presents difficult design problems.     What 

is offered here is a   straightforward  method for dealing with some of 

these problems. 

The problem to which the method j     ipplied is that of the elastic 

stability of a sandwich cylinder under uniform external lateral load 

and uniform axial load. 
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Notation 

r,  e. z 

a 

b 

t 

i 

E 

G 

E c 

Gre 
Grz 

q 

k 

rö       rz 

u,   v,   w 

radial,   tangential,   and longitudinal coordinates, 
respectively 

radius to middle surface of outer facing 

radius to middle surface of inner facing 

thickness of each facing 

length of cylinder 

modulus of elasticity of facings 

Poisson's ratio of facings 

modulus of rigidity of facings 

modulus of elasticity of core in direction normal to 
-    facings 

modulus of rigidity of core in r9 plane 

modulus of rigidity of core in rz plane 

intensity of uniform external lateral loading 

1 

1+*- a 

Et log b 
 a 

E    a 
c 

m 

(äDU TR fa 0-133 

normal stress in core in radial direction 

transverse shear stresses in core 

radial,   tangential,   and longitudinal displacements, 
respectively 

number of waves in circumference of buckled 
cylinder 

number of half waves in length of buckled cylinder 

J ' 

\^ 



p,i^-     ■.:.. 

\ mira 
i 

6ne Ec     -n2 

2Gre    2 

«z _fc_ 
Grz 

N„,   N   ,   N. normal forces and shear force per unit length of 9       z       9z ,     . ■•'■ r e 

facing ,      7 

Qg,  Qz transverse shear forces per unit length of facing 

^9'  ^z bending moments per unit length of facing 

Mz,g(   Mgz twisting   moments per unit length of facing 

R,  9,   Z surface forces per unit area of facing 

P Eca (1 - ^2) 

*1 

*2 

Et 

qa (1 - /) 
Et 

N z (1 - S) 
Et 

t2 

12a2 

t2 

12b2 

log natural logarithm 

A, B, C, D, K, L, A', B', A", B" arbitrary constants 

note -- any of the above terms that appear with a prime (as N ') 
refer to the inner facing. 
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Mathematical Analysis 

As previously stated,   the core is relatively weak.    Because of 

the high strength of the facings the core need carry little tension or 

compression except in a direction perpendicular to the facings.     The 

facings are able to resist shearing deformation in   their plane and it 

is necessary only that the core be able to resist shear in the radial 

direction in planes perpendicular to the facings.z In this analysis the 

core is considered to be an orthotropic elastic body.    It is unable to 

resist deformations other than those just mentioned.     This assumption 

makes it possible to dotermine explicitly how the stresses vary through- 

*- out the thickness  of the core. 
,'' . ■....'■■ 

The facings are treated as shells. 

^    '  Interdependaiice of the core and the facings is gained by equating 
^ , v, >•*..        ■"■' 

\ *\ 
their?disip.ld'Gemenl,s at the interfaces.     To  simplify the analysis the 

.-.    *" r"""       ai        .      ■■ r ' ' 
'•' t        "    ■"■'   if1' "i,       •-'  , 

"    ■&..♦• 

core is ässumctl  to extend to the middle surface of each facing. 

Figure  1'shows the cylinder and the coordinates that are used. 

Prebuckling Stresses 
—"~———_—-___^——_ 

Before buckling occurs the cylinder is in a state of uniform 

compression.     The axial load is carried by the facings since the core 

material is assumed to be incapable of carrying load in this direction. 

With facings of like material the stress is the same in both facings. 

i 
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If,  in addition,   the facings have the same thickness,  then the loading 

per unit length of facing,   Nz or N^,   will be the same.    This means 

that for a total load P, 

2Tra N„ + 2irb N '  = P. z z 

The calculation of stresses due to the lateral pressure is a 

problem in rotational symmetry.    Differential elements of the core and 

of the facings are shown in figure 2. 

Summing forces in the radial direction gives for the core 

IIL + ^E: = 0, 

for the outer facing 

aq. a (o- ) - N     =0, 
r r = a 9 

and for the inner facing 

b((rr)r=b-
Ne'   =0: 

Since o-    = 'E   2Ü  , 

N   = Et ( + £ ) .and 
a *    r = a 

N '  = Et ( + —) ,   these equations can be solved for tr  ,   N 
ö br=b r        u 

and Np1.     The results are* 

r r 

NQ = qa (1  - k),   and 

♦For a more detailed derivation of these terms see Reference 1. 
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N ' =qak  where 
e 

1 +. 
b  Et log £ 

£ a 
c 

As P and q increase, N , N ', N , N '  and o- also increase. 
z       z 6       6 r 

Eventually a condition may be reached where a slight increase in load 

causes the cylinder to lose its state of uniform compression and buckle 

as a result of elastic instability.     This buckling is assumed to cause 

only a small change in the stress distribution.     These small changes 

will now be considered. 

Buckling Stresses 

The Core 

A free body diagram of an element of the core is shown in 

figure 3. 

Neglecting terms which are products of more than three differ- 

entials,   a summation of forces in the r,   G,   and z direction gives 

ä^r   ,   ST rB or    + r  - + + r o1 rz 

3z 
(I) 

i    + 2T_Q = 0 
& re 

T      + r  OTrz   = 0 
rz   

(2) 

(3) 

wACD TR  oO-ljj 

K^ 



Equation (2) may be integrated to give 

r 

Equation (3) may be integrated to give 

(4) 

Trz = T   L (e) f, {*) (5) 

(r  ,   T       and T      as defined in terms of u,   v,   and w are 
r       r6 rz 

«r    - E    -— 
r c är 

Tre = Gre 

T       fc G 
rz rz 

_ > ——i 

1   öu  + äv 
r ae     ar 

V 

r 

"r— 

9z + ar 

(6) 

(7) 

(8) 

It is convenient to assume the displacements u,   v    and w in the form 

u = f.   (r) cos nQ cos TJ- Z 

v = f    (r) sin n9 cos — z 
2 a ■ 

w = f,  (r) cos n9 sin — z 

(9) 

(10) 

'3 \»/ •-'■"' "v "■'" ^ *■ (11) 

This form will permit a unique determination of f,   (r),   f, (r),   and 

f, (r);   assumes upon buckling n -circumferential waves and m 

longitudinal half waves;   results in zero displacements in the radial 

and circumferential directions at the ends;   and imposes no moment 

upon the facings at the ends. 

From a consideration of equations (4),   (5),  (7),   (8),   (9),   (10) 

and (11) it is clear that 

W'äDD TR 6O-I33 3 



f j  (6) fj (z) = sin n 9 cos — z and 

^2 ^ *1 (z) = co8 n8 8in — SB' 80 tliat 

„.   . ,    B X. 
«« ' . T-"_iW,-—-i sin no cos — z     and (12) 

■ -A „    .     V ,     x 
T = —   cos no sin r" a. (13) 

■ ■-., .'.--i'j.-,^ rz      r * v     ' 

iSübstitüting equation (9) into (6) and then equations (6),   (12) and (13) 

into equation (1) gives -? " , 

^»f,   (r) 92f1  (r)      nB       \ ':-       "^ 
E .^r-^ + E r  i  + — + -  A = 0 (14) 

c       or c ar2 r2        a 

which uponaritegration shows that 

fj  (r) = C + D log r + AT + B1 — (15) 

Equations (9),   (10) and (12) are substituted into equation (7) to give 

B_ 
= Gre[f(C + Dlogr + A.r+f )+^-ÜJd]   .(16) 

from which 

f2 (r) = Fr + Cn+ Dn (1 + log r) + An r log r +  — .        (17) 

Equations (9),   (ll) and (13) are substituted into equation (8) to give 

—   = G„   [C + Dlog r + Ar + B'i +^liL) ] , (18) 
r rz r är 

from v.hich 

f, (r) = K   + A"   (r2 + log r) + Cr + Dr  (log r -  l) 

+ B      g r. (19) 

It is convenieiit to have the constants of f,   (r),   f,  (r) and f, (r) in non- 

Jlmensionai iorm.    Redefining the constants the following form is 

obtained. 
»*.L,ü In o^-in 9 

ft 

- 
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f^-""::- 

u = (Aa + Br + C ^-   + Da log 1 ) cos ne cos A z (20) 

..;« 

**.<: «^ 

[ -Ana + Bnr log ä + C „J   6n^ 

Fr ]  sin no cos — z 

.2 

2p 

Llii (log f + 1) + 

w =  [ AKr + Ba\ (^-^   -    «   log ^ ) + CXa log |- + D\r 

(log — -  1 ) + La ]  cos nB sin —   z 

(21) 

(22) 

The Facings 

Free body diagrams of a facing element showing the forces and 

moments are shown in figures 4 and 5.     It is necessary,   in this type 

of problem,   to include components of forces which result from elastic 

deformation of the element.    The geometry of the situation is such that 

it is difficult to write equations of equilibrium.     It is safest to use 

results obtained from a mathematical theory of thin shells.    Such 

theory,   as   developed by Osgood and Joseph (ref.   2),   when applied to 

^""i* -   cylindrical shells yields,   for the outer facing at r = a,   the following 

equations 

TR oC-1- IC 
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' 

Aa is customary in such problems the stretching of the miffdi e- surface 

is f.aken into account by substituting in equations (23) to (28) .      >-.>;, 

Nz (l + Se)for Nz. '■"'.■ 'I 

Ne (1 + € z) for Ne, 

and multiplying the surface forces by 

(l+ce)(l + cz). 

In these expressions 

1   ^v       u 
«e  = I ^ + ä   and 

i
 z ~ ^z ■ 

p 
N    and Nn of equations (23) to (28) are replaced by ( + 

z o 2IT (a + b) 

AN  ) and   [qa (1  - k) + ANQ],   and in the corresponding equations for the 

P . 
inner facing N  '  and Ng' are replaced by \ ^—',—"TTÄ + A N  ' ;   and 

(qak + ANv).     This is necessary because the forces in the buckled shell 

are the prebuckling forces plus the forces due to buckling.     The AN  , 

A NJJ' ,   A NQ,   and A Ng'  are the forces due to buckling which are later to 

be expressed in terms of displacements. 

All forces,   moments,   and twists other than the prebuckling forces 

are considered to be small quantities resulting from the buckling.     The 

displacements u,   v and w,   and their derivatives,   are also small quantities 

resulting from the buckling.     In equations (24) to (28) products of any two 

it&DD TU o0—155 '-'"■ 
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['"' 

such small quantities are neglected. Equation (26) is solved for QQ 

and equation (27) for Qz. The results are substituted into equations 

(23),   (24) and (25).     This gives: 
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(These equations are for the outer facing.    A similar set is obtained for 

the inner facing.)   Into equations (29).   (30),   and (31) expressions for 

the forces,   moments and twists in terms of the.displacements (ref.   3) 

are substituted.    The surface forces 

R = qa - (q-y k + A(rr) r = a    (for outer facing) where q — k is the 

prebuckling stress and A «rr the stress due to buckling, 

6 = - (T  «) (^or outer facing),   and rö r = a 

Z - - (T    ) (for outer facing), 
rz r = a 

are also expressed in terms of u,   v and w and substituted into the three 

equations. 

This leads to three equations in terms of u,   v,   and w for the outer facing 

and three similar equations for the inner facing.     The equations for the 

outer facing are: 
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To achieve proper interaction,  between the core and the facings,   the 

displacements of the middle surfaces of the facings are set equal to the 

displacements of the core at r    = a and r = b. 

Thus displacements u,   v and w in equations (32),   (33),   and (34) 

are replaced by equations (20),   (21),   and (22) with r made equal to a. 

In this manner three equations in six arbitrary constants (A,   B,   C,   D, 

L,   and F) are written for the outer facing.     In a like fashion three 

equations are written for the inner facing.     The coefficients of the  six 

arbitrary constants are shown in the form of a determinant on the 

following page. 
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It is possible to find simultaneous values of (j) , and 4)- for which 

these six equations will be satisfied for any values of the arbitrary 

constants.    Mathematically this means that for such a combination of 

loads the deflections are indeterminate.    The shell becomes elastically 

unstable and the loads that bring about this condition are called 

critical loads. 

Numerical Computations 

A literal solution of the sixth order determinant for the eigenvalues 

is not feasible.    A numerical solution,   from which curves may be drawn, 

is possible if a digital   computer is used.    A CPC Model 2 was available 

to make computations.    Even with the CPC the task seemed over- 

whelming.    If,   however,   E    is made infinite,   some of the terms of 
c 

determinant vanish.     The assumption that E    is infinite is common in 

work with sandwich construction and has been found to give satisfactory 

results in most cases.     The sixth order determinant with E    made c 

infinite is represented below: 
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Al Bl Cl 
0 Fi Ll 

A2 B2 C2 0 F2 L2 

A3 
0 C3 

0 F3 L3 

A4 B4 C4 
0 F4 L4 

A5 B5 
C 
5 

-y F5 S 
A6 B6 C6 *h F6 L6 

This determinant is then reduced to a fourth order determinant shown 

below: 

AC-CA B CL-LC FL-L.F 
1313              1                        1313 1313 

A2 C3 ' C2 A3 B2 C2 L3 ' L2 C3 F2 L'3 ' L2 F3 

A4 C3 " C4 A3 B4 C4 L3 ' L4 C3 F4 L3 " L4 F3 

(A5|+A6)C3- B5J+ (C5^+C6)L3- (Fs^+F^Lj 

(C5|+C6)A3 B6 (L5|+L6)C3 (L5 | + L6) F3 

The determinant is then programmed for the CPC.    A trial and error 

solution is made by substituting values of (|> .   or    $ ^ until a value is 

found that will make the determinant zero.     This was done by finding 

values on each side of zero and interpolating to find the eigenvalue. 
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Discussion of Results 

Since the problem is solved by numerical methods the results 

are presented by the curves shown in figures  6,   7,   8 and 9.     The 

values of _ = 0. 97 and — = 1, 000 were used for all of the curves. 
a t 

Figure 6 is a family of curves in which -<$>? ^s plotted against 

i E      for different values of n.     In these curves the values       = 10, 000 
ma ^-"rO 

and     = 1, 000 were used.     Such a set of curves is used in the 
Grz 

following manner. 

Knowing — of the cylinder one picks a value for m and n.     A a " 

value of -4>-, is determined by reading above i    on the corresponding 
4 ma 

n curve.     This procedure is repeated until the lowest possible value of 

-c})-, is found.     The axial load under which the cylinder will buckle can 

then be determined. 

The curves of figure 7 differ from those of figure 6 as a result of 

making a and a'   zero.     This is equivalent to neglecting the bending 

stiffnesses of the facings.     A comparison of the curves of figure 7 with 

those of figure 6 shows that for values of -— greater than 0. 15 there is 
ma 0 

little difference.     It can be concluded that only for very short cylinders 

need the bending stiffnesses of the facings be considered.     For   
ma 

less than 0. 15 the curves of figure 7 approach 

h 

L. 



Grz a (1  - /) (1 - £)< 

2 Et log ^ (1 + |) 

This value is obtained by making n and i zero and expanding the 

determinant.    Solving for Nz and replacing log —  by the first term 

of its series expansion shows that 

N    = -  (a -b)     G        . 
Z 1+Ü 

a 

The curves   of figure 8 are the result of increasing G      and G  g 

tenfold.     The value of -<j)7 corresponding to 

N   ..IfL^i)   G 
1+b 

a 

appears as a flattening of the curve in the region of * = 0. 01.    For 
ma 

i 
smaller values of    the curve rises due to the stiffness of the ma 

facings.     For values of    greater than 0. 1 the curves show a 
ma 

considerably lower buckling load. 

From a comparison of figures 6 and 8 it appears that as G  _ is 

decreased the buckling load for all cylinders/except those long enough 

to fail as an Euler column,  will approach 

N_ = . l2_Lb)   G 

1+* 
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This limit has been recognized (ref,   4) as the critical load for shells 

with a low value of G     .    It should be noted that this load depends only 

upon the thickness and the modulus of rigidity of the core. 

Figure 9 shows curves of -4) ^ plotted against i    for different 
ma 

values of n.A    for these curves was taken to be 

6     - ^ 9,  2 

This represents the case for an end load equal to qna   .     The situation 

is like that of a cylinder,   with ends,   under uniform pressure.     The ends 

of course stiffen the cylinder,   but,   if the cylinder is not too short, 

reasonable results can be expected.    Since $ ,  decreases as z    is 
1 ma 

increased it must be concluded that the cylinder will buckle with m = 1. 

The critical pressure can be determined by reading <J>. from the lowest 

n curve. 

Conclusions 

Although only a few curves were drawn it is apparent that this 

analysis is helpful in understanding the effect produced by a variation 

of the parameters that enter the problem.    Further study is required 

before it will be known whether the actual buckling load may be predicted. 

It is felt that the method by which this problem is solved can be 

applied with advantage to many problems of sandwich construction. 

Unfortunately in most cases a numerical solution will be required. t   ,"r 
..ivi>i<   in   OU—X: 
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Figure  1. --Sandwich cylinder. 
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Figure 2. --Differential elements of core and facings before buckling. 
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Figure 3. --Differential element of core. 
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Figure 4. --Differential element of facing showing forces. 
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Figure 5. --Differential element of facing showing moments and twists. 
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bLCTICW II 

BUCKLING OF CYLINDERS OF SANDWICH CONSTRUCTION 

IN AXIAL COMPRESSION- 

By 

H.   W.   MARCH,   Mathematician 
and 

EDWARD W.   KUENZI,   Engineer 

Z 
Forest Products Laboratory, — Forest Service 

U.   S.   Department of Agriculture 

Summary 

This report presents a theoretical analysis for the behavior of long,   circu- 
lar,   cylindrical shells of sandwich construction under axial compressive 
loads.     The analysis is designed to evaluate the effects of the relatively low 
shearing moduli of sandwich cores on buckling stresses.    Families of curves 
are presented for use in designing shells of sandwich construction having Iso- 
tropie facings and orthotropic or Isotropie cores. 

The results of the theoretical analysis were compared with those obtained 
from tests on a series of curved panels.     It was found that the theory applied 
reasonably well to curved plates of sizes sufficient to include at least one 
ideal buckle.     Application of the theory thus is not limited to long,   complete 
cylinders. 

—This progress report is one of a series prepared and distributed by the 
Forest Products Laboratory under ü.   S.   Navy,   Bureau of Aeronautics 
Order No.   NAer 01237 and 01202,   and U.   S.   Air Force No.   USAF 18 
(600) -70.    Results here reported are preliminary and may be revised 
as additional data become available.    Original report published June 1952. 

2 
—Maintained at Madison,   Wis. ,   in cooperation with the University of Wis- 

consin. 
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Introduction 

In the design of aircraft and guided missiles,   it was found necessary to de- 
vise a method of determining the stress at which curved sandwich panels 
subjected to axial compression become elastically unstable.     It is known 
that,   for thin,   homogeneous materials,   a curved form greatly increases the 
critical load as compared to a flat sheet of the same approximate size.     A 
similar increase may be expected for curved sandwich panels.     Although 
this report applies primarily to sandwich construction for aircraft,   the re- 
sults are general and apply to any structures of the type considered. 

This report presents a theoretical analysis of the behavior of long,   circular, 
cylindrical shells of sandwich construction under axial compressive loads 
and an experimental confirmation of this analysis by tests on curved panels 
of sufficient size to include at least one ideal buckle.     Thus,   these panels 
are assumed to simulate the action of complete cylinders. 

The buckling  of a homogeneous,   Isotropie,   thin-walled cylinder was treated 
by von Karman and  Tsien (16)— and by Tsien (13,   14) in related papers. 
These authors assumed,   in addition to the wave form of the classical theory, 
inward buckles of diamond shape to represent the characteristic buckles that 
are actually observed.     They used an energy method to determine the criti- 
cal compressive stress.     This method,   in which only diamond-shaped buckles 
are used,   was applied by March (7) to cylinders made of plywood,   an ortho- 
tropic material.     Particular attention was paid to the effect of initial irregu- 
larities  that contribute to the observed scatter of experimentally determined 
critical  stresses of both isotropic and orthotropic cylinders. 

In this  report,   the  effect of shear deformation in the core of a sandwich 
cylinder is taken into account by employing an approximate "tilting"    method. 
This method was used by  Williams,   Leggett,   and Hopkins in their analysis 
of flat sandwich panels   (18) and by Leggett and Hopkins in their analysis  of 
flat sandwich panels and cylinders  (4).     It amounts  essentially to assuming 
that the transverse components  of shear  stress are  constant across the thick- 
ness of the core.     The form of buckles assumed by Leggett and Hopkins  (4) 
in the cylinder is different from that assumed in this report. 

The core and facings are taken to be orthotropic, with two of their natural 
axes parallel, respectively, to the axial and circumferential directions of 
the  cylinder.      The facings,   which may be equal or unequal in thickness,   are 

_ 
—Underlined numbers in parentheses refer to Literature Cited at end of 

report. 
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assumed to be thin,   but their,'flexural rigidities are not neglected,   as these 
may be of importance in certain cases.     All stress components in the core 
are neglected except the transverse shear components.     It was pointed out 
by Reissner (12) that the stress component in the core normal to the facings 
may be of importance in the analysis of sandwich shells.     Preliminary calcu- 
lations indicate that the effect of this component is small in the problem under 
consideration. 

As was done in work described by Forest Products Laboratory Report No. 
1322-A (7),   initial irregularities are assumed to be present and to grow un- 
der increasing compressive load until buckling occurs.    For a discussion of 
this important matter,   the reader is referred to that report and,   in particu- 
lar,   to the observations of the growth of artificially produced initial irregu- 
larities.     Also as described in report No.   1322-A,   a large deflection theory 
is used to take into account the nonlinear support associated with the curva- 
ture of the shell,   as discussed by von Karman,   Dunn,   and Tsien (17).     The 
derivations of the differential equation for a stress function and of the ex- 
pression for the energy of deformation are extensions of the analysis used 
by von Karman and Tsien (16) for the homogeneous,   isotropic cylinder to the 
sandwich cylinder composed of orthotropic materials.     Suitable modification 
is made for the effect of shear deformation in the core of the sandwich. 

Theoretical Analysis 

Choice of Axes Notation 

The choice of axes is  shown in figure  1,   the coordinate y being measured 
along the circumference.    The notations for stress and strain are those of 
Love's treatise (5).     The components of displacement in the axial,   circum- 
ferential,   and radial directions,   respectively, are u,   v,   and w,   the latter 
being positive inward.     Since initial irregularities of the cylindrical surface 
are assumed,   the symbol w0 is used to denote the initial distance,   measured 
radially,   of a point of the middle surface from a true cylindrical surface of 
radius r,   and the symbol w to denote the corresponding distance at any stage 
of the deformation.     The thickness of the core is denoted by c and that of each 
facing by fi  and f,,   respectively. 

Extensional Strains and Stresses 

Expressions can now be written for the extensional strains uniform across 
the thickness of the cylindrical shell and for the corresponding mean mem- 
brane stresses.     On these will be superposed a system of flexural strains, 
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and the energy of deformation associated with each system of strains will 
be found. 

The extensional strains are expressed by the equations: 

au    i /* aw 
e. 

9u    l/'öw^     JL /aw0\ 
= ax + 2 V ax J ' 2 ^ ax y 

yy    ay    2 V9y /   ' 2 Vay 
8v + 2. /8w\        ^ />owo>j w 

r        r (1) 

_ au    av    aw aw    awo 3wo 
exy ' ay + ax + ax ay * ax    ay 

In each facing,   the corresponding stress components are: 

E 
) X 

IT   (e + (r      e xx yx    yy' 

y      X ̂(. + 0-      e     ) yy xy    xx' (2) 

xy exy 

where Ev and E    are Young's moduli,   \i.       is the modulus of rigidity for 
          y xy 

shearing strains referred to the x and y directions,   tr      and cr      are Poisson's e — -i- '      xy yx 

ratios,   and X. = 1  - tr      «r     .     All of these quantities are elastic properties of Ä.y      yx 

the facings.     Because the stress components Xx,    Y   ,   and X    arc neglected 

in the core,   the mean membrane stress components for the cylinder are: 

      Ea 
xx = x (exx + V eyy) 

  fe      +0"      e     ) X    ^  yy      "xy    xx' (3) 

X u.     e 'm    xy 

w^here: 

E> ih + h) Ey   (fj   +  h) ^y (fl + f2) (4) 

and: 
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h = c + t^ + i2 (5) 

From the relation: 

E    a      = E    (r x    yx y    xy (6) 

that holds for orthotropic materials and equations (4),   it follows that: 

E, o-       = E.   er a     yx b     xy 

By using this relation,   it is found from equation (3) that: 

XX     Ea Eb       y 

(7) 

e       —LY-    ^IX
-
- —Y"    ^LIT 

yy " Eb   y - Ea    ^ - Eb    y - Eb     x (8) 

1 
-xy X. 

The mean membrane stress  components satisfy the equations of equilibrium: 

ax..     9X 

ax      ay 

ax„     ay" 

-£=0 

(9) 

ax      ay 
JL = o 

They can consequently be expressed in terms of a stress function as follows: 

X    -^1     Y    -^     X    - 
x" ay^   y'ax2'   y" 

azF 

ax ay 
(10) 

It is found from equations  (1) by eliminating u and v that: 

a2e         a2e 
 ^i + yy 

9   exy _  . a2w.2       32w   a2w 

axay      axay       ax2   ay2 ay^       ax^ 

a2w   2    a2w   a2w      i a2w    i 92w 
( °)   + Z 2. + _      0 

axay ax2    ay2     r ax2     r  ax2 

(ii) 
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By introducing (10) in (8) and substituting the results in (11),   the following 
differential equation for F is obtained: 

94F 
+ B 

a4F 
+ C 

a4F 
7    2      5     7 

ax ^ 
•=( ) 

ax29y2  axSy    dx2 9y2 

^2   2 

( £) 
ax3y 

82w a2w  i a2w i a2w 
+ 2. 1 .+ _ 

wh ere: 

r 3x2  r  ax2 

(12) 

A =_L> B = —, C 
b      a 

Zo-, xy 
(13) 

It is  readily established that the following expression represents the energy 
of extensional deformation of a rectangular portion of the shell with edges of 
length a and b: 

u     a       b w.=|/ J 
o       o 

— 2 — 2      2(rxv _ 
BX       + AY       - x YE 

1     ^ 2 ^  X    Y    + -^— X dy dx (14) 

Form of Buckles and Initial Irregularities 

The stress components X   ,   Y   ,   and X    in (14) are derived from a stress 
function F,   satisfying the differential equation (12),   which involves deriva- 
tives of wQ and w representing the initial and deformed middle surface of the 
shell.     For w,   the inward radial deflection,   the following form will be chosen: 

— = g + 5 cos     (/3y -  ox) cos     (ßy + ax.) 
r 

(15) 

where 

ß = -,     a = - 
b a 

(16) 

The nodal lines of the trigonometric portion of equation (15) are shown in 
figure 2.     The displacement w is positive inward.     In equation (16),   a and b 
represent the length and width,   respectively,   of a diamond.     The initial ir- 
regularities will be assumed to have the form (15).     This is done for the pur- 
pose of simplifying the calculations.     Then w0 is chosen in the following form: 
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wo 2 2 
-7-= go+ 6ocos  (ßy' ^ cos (ßy+ o5c) (17) 

An initial flat spot on the surface of the cylinder could be described roughly 
by equation (17).     An initial irregularity was introduced here,   as it was in 
report No.   1322-A (7),   to obtain a qualitative description of its influence in 
causing an isolated buckle to develop in its vicinity.     If the initial depth of 
an irregularity of the form (17) is very small,   the dimensions of the area 
that it occupies are not very important.     For this reason in order'to simplify 
the calculations,   the dimensions a and b in equation (17) are taken to be the 
same as those in equation (15).     From the qualitative description that is ob- 
tained of the development of an isolated buckle,   conclusions were drawn in 
report No.    1322-A that led to the derivation of the final formulas from the 
analysis for the case w0 = 0. 

The details of substituting (15) and (17) in (12),   of obtaining the stress func- 
tion F and the stress components Xx,   Y   ,   and X  ,   of substituting these stress 
components in equation (14),   and of related operations are identical with the 
corresponding operations performed in report No.   1322-A (7).     Reference 
is therefore   made to equations  (21) and (31) of that report.     The following 
differences in notation should be noted: 

Notation of Report No.    1322-A Notation of Present Report 

H E    E, a     b 

H 

f,   i 6,   5 

X.   Y,   Xy X,   Y,   X 

From  equation (14),   the energy of extensional deformation Wi   is then found 
to be: 

W,   = hab 
1  ~~8' 

L4' ■< 4r   o V (62  - 60
2)2 J  A    " rV (6 + 60)) 

128Bß 128Aa 

1 

16 (Aa4 + 81Bß4 + 9CaZßZ)      16(81Aa4 + Bß4 + 9C(/ß2) 

4   2- 
rZßZ (5 + 50V 

+ 1 

64(Aa4 + B/34 + CaZßZ) 
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This  equation is equation (31) of report No.   1322-A (7) with the proper values 
inserted for the former abbreviations M and S.     The quantities p and ci 

represent the mean compressive stress and the mean circumferential stress, 
respectively. 

If n is the number of buckles in a circumference,   the width b of an individual 
buckle and n are related by the equation: 

Zirr 
(19) 

Then: 

R   - 1 -   n 
(20) 

It will be convenient to denote the ratio — of the dimensions of a buckle bv: 
a ' 

*=r = l (21) 

WADD TR  60-133 ^4 
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In the expression obtained from (18) by using equations (20) and (21),   let: 

(22) 2ht       c r     t Er 
Ti - n   —,   t = 6—,   t    = o   — 1 r '   b h     ^o        oh 

K1  = Az4 + 81B + 9Cz 

K2 = 81Az4 + B + 9Cz2 

K3 = Az4 + B + Cz2 

1       +      Z 17z 
1      4096B      4096A     512K1     512K2      2O48K3 

4 
-       I       +     z 

''2      512A      32K 

1      +   z 
3 - 256A      32K3 

Equation (18) then becomes: 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

i 
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f w1 = hab^ e^2 a2. e0
2)2- e^a* -io

2)(e.-i0) 

+ e3 (e - e0) (29) 

Flexu- .1 Energy of the Shell 

To determine flexural energy of the shell,   the following simplified expres- 
sions for the changes in curvature and unit twist are used: 

d2 (w 'o) 32 (w wo)    8' (w 

8x' 9y' 

wo) 
(3 0) 

ax9y 

A discussion of the approximations involved will be found in a paper by 
Donnell (1).     These expressions were used by von Kärman and Tsien (16) 
and by March (7).     The expressions  (30) are exactly those used in calculat- 
ing the flexural energy of a flat sandwich plate.     The approximate flexural 
energy of such a plate was found by March (9) and by Ericksen and March (Z) 
by using the "tilting" method of Williams,   Leggett,   and Hopkins  (4,   18). 

In this  method it is assumed that any line in the core that is initially straight 
and normal to the undeformed plate will remain straight after the deforma- 
tion,   but will deviate in the x and y directions from the normal to the de- 
formed plate by amounts that are expressed by the parameters k and k'. 
These parameters are determined by an energy method.     These  "tilting" 
factors k and k'  are introduced as well as two quantities q and q'  that deter- 
mine the positions  of the surfaces in ■which,   respectively,   the components u 
and v of the displacement in the  core vanish.     The letters k'  and q'  replace 
h and r,   respectively,   of report No.   1583-B,   because h and r have already 
been used in the present report.      The following derivation of the  expression 
for the flexural energy follows closely that used for the flat sandwich panel 
in Forest Products Laboratory Report No.    1583-B (2),   to which reference 
is made for further details.     For the sake of simplicity in writing,   the initial 
irregularity w0 will be for the present taken equal to zero.     It will then be 

introduced in the final steps by replacing w by w - w0. 

The components of displacement in the core (fig.   3) are taken to be: 
, aw 

Uc = - k (C  - q> -^ 

Vc=-k.   (;.q.)|^ 

wc  = w  (x,    y) 

(31) 

WADD TR O0-133 45 

f; 

f 

L 



Thus  £, = 1 denotes the  surface in which the  components   of displacement in 
the x direction vanish and k is the parameter describing the inclination in 
the x direction of the respective plane sections to the normal to the deformed 
surface.     Similarly q'  and k*  are related to the displacements in the y direc- 
tion.      These four quantities are  to be determined in such a way that the flexur- 
al energy associated with a prescribed deflection w is a minimum. 

To arrive at expressions for the components of displacement in the facings, 
it is noted that the continuity of the displacement at the facing-to-core bonds 
requires that the components (31),   evaluated at ^  = 0 and £, = c,   shall be 
those at the inner  surfaces  of the facings fj  and i^,   respectively.     Within 
each facing,   the  components  of displacement are-assumed to be such that 
a straight line initially normal to the undeformed surface of the plate will 
be  straight and normal to the deformed surface.     Accordingly,   the compon- 
ents  of displacement in the facings f,   and f^,   respectively,   are: 

Ul   =   (kq   -   l) 
aw 
8x 

(32) 

w,   = w (x,   y) 

and 

u2  =   -[k (c   - q) + C   -   c] 

c   -  q')  +  C   "   c] 

aw 
a-JT 

V2 = fk- 
L 

aw 

37 (33) 

= w (x,    y) 

The components  of strain in the  core c ana facings f^  and i^ will be denoted 
by the  superscripts  c,    1,   and 2,   respectively. 

From  (31),   the transverse  shear  strains  in the core are: 

(c) 
Cx 

aw (c) 
^-^   ek =(1 -*') 

aw 
ay (34) 

The effect of the  remaining strains in the core is assumed to be negligible. 

In finding the strain energy of the facings  in the bending of the plate  (or  shell), 
it is  convenient to consider the  components  of strain in the facings to result 
from the superposition of two states of strain.     The first of these consists of 
the membrane strains in the facings  associated with flexure,   that is  the 
strain in their middle surfaces.     From (32) and  (33),   these  strains  are found 
to be: 

w^_DD TH  60-133 
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(I)      „ fl    32w 

ox 

.(1) i , fK a2w 
e-'  = (kq    +-4) yy 2  ay2 

(1) i   ' ,  92w 
eV   ^  ^    kq + k q    + f.    -r-r- xy       v   n 1'  9x9y (35) 

and 

xx 

yy 

(2) 
exy 

k  (c   -  q)  + T 
a w 

ax' 

k    (c   - q )  + 
f: 92w 

J 9y 

k  (c   -  q)  +  k'   (c   -  q')  +  f2 

"I     .2 a w 
3x3y 

(36) 

The second state of strain in the facings is that associated with their bending 
about their own middle surfaces. This state, in either facing, has the com- 
ponents : 

«aw     i 'aw     > ->,'aw 
t,    —^-,   e    _  = - t     ^-,    e        -  -  Zl, 

ax 2 yy 
(3 7) 

ay xy 9x9y 

where |    is measured from the  middle surface  of the facing  under  considera- 
tion. 

The  strain energy in the core or facings  is given by the  expression (6,   8). 

U - — | (  (    Ev e2xx + E     e2yy + 2E    er        e      e 
2XJJJ     |_ x V y y x     yX      xx    yy 

+  ^xy  e2xy +   ^yt   ^yi  +   ^x  e\x 
dt  dy dx (38) 

where for the  material under  consideration (core or facing),    \ =  1   -   cr     a     : v =" xy   yx 
Ex and E, are  Young's  moduli;    H-Xv>   M-   r>   and  ^i»     are moduli of rigidity; 

and cr„,r and cr„„ are  Poisson's  ratios.     Primed letters will denote  the  elastic 
, y 

xmju   ii\  ÖU—±    ■) 

V.. 

■       ■ 



constants of the core material and unprimed letters will denote those of the 
facing material.     The integration indicated in formula (38) is to be carried 
out over the area OABC of figure 2 and the thickness of the core or facings. 

The energy in the core is obtained by substituting expressions  (34) into (38), 
the remaining strains in the latter formula being neglected as previously 
stated.     After integrating with respect to £ over the thickness of the core, 
the expression for  the  energy,   denoted by Uc,   is 

U 

a    b 

^x    (1  " k)' m + M y^ 
(1 - k ) © dy dx (39) 

The strain energy in the facings  associated with the membrane  strains is  the 
sum of the energies  obtained from (35) and (36).     With the  substitution of 
these expressions into (38) one obtains,   after integration with respect to £, 
the following  expression which is  denoted by U»,. 

b 
1 

U 
M     2X 

y    1 

f1   2 
f,   (kV  +T-)     + f, (k    (c  -  q ) + 2 \        /9  w ^ a 

+ 2Exvf i (kq + T50^' +T) + iz (k (c " ^ + T)^' (C - *) + T)| 
2        2 3  w 9  w 

ax2   dy2 

The strain energy in the facings associated with the flexiiral  strain,   U    ,   is 
obtained by substituting expressions  (37) into (38) and integrating over the 
volume of each facing.     After integrating with respect to t,, 

^f,3  + f   3\     a    b 
UF-fJ 1. 

24X 
o     o 

9Zw 

»y2 

IM 
\d*dy) 

+     XfiXy dy dx (41) 

y L 

\ - 

L^ 



Now in all of the expressions  (39),   (40),   and (41)  replace w by w -  w   .   The 

flexural energy  WT of the  region OABC of the shell is     the sum of UM,   U^, 

and U   . c 

For  equilibrium, the "tilting" factors  k and k   and the ordinates q and q'  of 
the neutral surfaces are to be chosen so that the total energy is a minimum. 
But these factors appear only in the flexural energy W2.     Hence,   they must 
be chosen to satisfy the  conditions 

aw. 
9(kq) 

0, 
9W- 

9(k'q') 
0, 

9W- 
 i 

9k 
0, 

aw 
ak' 

2 _ 

By proceeding exactly as  in report No.    1583-B  (2),   the quadratic form (A14) 
of that report with k' and q1   replacing h and r,    respectively,   is obtained for 
W-,.     The coefficients B-  in equation (A14) are defined by equations   (A15) in 

terms of the quantities A-,   which are defined by: 

b  r- 
ä-(w -  w0) 

ax^ 
+    \fJL xy 

/a2 (w - w0)Y 
\    9xay       / 

dy dx (42) 

a      h r 

A, = - 
2       \ 

Ex ^yx 
a   (w - w0)   a   (w - w0) 

+  Xfx 
a   (w - w0) 

xy^      ax ay 

a      b 

ax 

2 

dy1 

dy dx 

A, 
l>ff< 

o     o 

a      b 

a   (w - w0)N 

+  ^xy I        §7 

o       O 

dy dx 

a^ (v 

c9y 
dy dx 

(43) 

(44) 

(45) 

(46) 
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On factoring out the common factor,   it is found that: 

2W2 = r2 (6 -  60)2 ab |   B/  (kq)2 + 2B2'  (kq) (k'q') + 33* (k'q')2 

+ 2B4
,  (kq) k + Z-B,^  (kq) k' + ZB^  (k'q') k + ZB^ (k'q') k' 

+ B7' k2 + ZBg' kk' + Bg' k'2 + ZBJQ'  (kq) + ZB^  (k'q') 

'.3'] + ZB^' k + 2B13' k'  + B14    ;   B, (47) 

where the quantities Bj    are defined in terms of the quantities Aj   by equa- 

tions  (A15) of report No.    1583-B,   each A-    replacing the corresponding Aj 

in those equations.     The quantity in brackets in equation (47) corresponds to 
ZU   in report No.   1583-B.     (Note that equation (AZZ) of that report should 
Tead P = ZU'). 

It is easy to see that the steps of imposing the conditions 

aw. 
0 

3W. 

3(kq) a(k'q') 

aw, 
o,  —ä 

ak o. 
aw z _ 
ak' 

and of determining kq,   k'q',   k,   and k'  and substituting their values in the ex- 
pression (47)   for ZW2 are identical with those taken in report No.   1583-B (Z) 

and that 2W,  is  equal to the  right-hand member of equation (AZ5) of that re- 

port multiplied by r     (5  -  60)    ab.     It is concluded from equations (AZ6),   (AZ7), 
and (A28) of report No.    1583-B that: 

W2 =  1/2 r2  (6 -  60)2 ab 
I A/ + 2A2' + A3' + (Aj'A  '  -  A2'2) (-^r + -4-) 

L                                                                                         -            A4         A5      J 

V 

A'4.       A -'(j>      <t.2 (A.'A  '   - A  '2) 
1+^ + 4T-+  A  ^  ' A4          A5                    A4     5 

+ If (A^  + 2A2' + A3'); 

where I_,   lr,   and 6 are defined by: 

(48) 



If = 
12 

cflf2 
f    + f-, 

1        2 

and A.'   by: 

1 
{    = t   (3  Exö4 +  X^xy^/32) 

A^    = T    (Ex^yx +  Vxv'' a  ^ 

l 2n2> (3  E   ß    +  \\x     otß 3 \    ^      y^ ■'-xy- 

3ß'    ^ Cx ,       3P     ^ yt 
8 A 

(49) 

(50) 

(51) 

5    - 

(52) 

(5 3) 

(54) 

(55) 

Note that 

A,     + 2A^    + A,     = ¥— K 
1 2 3 V       4 

where 

K.=?Ez"*+3E     +2(Eo-       +2Xu.     )z' 
4 x q v    x   yx ^xy' 

and introduce the following abbreviations in the  expressions for At   ,   A-> 

and A-,   : 

Al    -    X   dl'   AZ    =     \   d2'   A3    =~d3 (56) 

where: 

'laXlu   iH   DU-ijj 

'•■i 

L 



d     = 3E    z4 +  Xu       z2 

i x rxy 

d2 :::  (Ex ""yx + XM-XV) (57) 

d3   =3Ey+  ^xy z 

Also, 

^   2     ' no2     ' 2 

4 " 8 " 8 
(58) 

Substituting these expressions for A .  equation-(48) becomes 

w2 = IX r2 (5 " 5o)2 abß4 

fl |^K4 + 

1        ^ 

^(d^j   -  d22)(-r-^+-r 
^Z      ^y^ y 

8i32d]<j)          8ß2d,4.      64ß44>2(d1d,  - d 2) 
11 + __i  +   _£_ + L_i 1— 
^      3 KM'     Z

2
        SKLL'   „ 9K

2
IJIV    \i     „z2 

^ t,x r yC ^t.x^ y; 

+  IfK4 (59) 

The following transformations are made by using equations  (20) and (22): 

8/3   ({)       _   2 n   (j) _    2r)4)  _ jr)_ „ , 
i - i ?  " > " x 

3XfjL ^ 3^ ,   r'1      3Xjx „   rh      E 
t,x %-x- bx x 

wh ere 

2E. 

x      3 XLL ,    rh ^ ^x 
(60) 

and 

83  <»     -    T!   s 
x 3XHL 

yt. 

where 

S    = 
2EX4> 

V      3Xfi       rh 
yC 

(61) 
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The coefficient of the expression in brackets in equation (59) is also trans- 
formed by using equations (20) and (22).     The expression for W^ becomes: 

W. 
__ (e - So)2 *b A3 j 

32XrZ 

(I/h3)   [K4 + (d1d3  - d2
2) ^ (^ + Sy)1 

1 + 
r1dISx      ^S        ^ (d1d3 - d^) s S 

+ (If/h  ) K4 

E    z' x 
E  2Z2 

x 

> 

Or 

W 2 " e4 ab r,2 (e - e0)2 ^ 
r 

(62) 

(63) 

where 

32\ 

(I/h3)[K4+(d1d3-d2
2)^-(^+S   )] 

1  + 
r1d1Sx      ^S ^(d1d3  - d/) S  S 

E    z 
x 

2 z2 

(64) 

Virtual Work of the Compressive Load 

Exactly as  in equation (35) of report No.    1322A (7),   the  virtual work,   Wo, 
of the compressive load,   calculated for the region   OABC,   figure 2,   is 
found in the notation of the present report to be: 

W,   = abh     Bp    + 
rxy 3      2    2 /r2      E   2v    1 
E^ Pcl +T6   r     a    (5     "  5o   )PJ 

= abh   Bp    + 
xy .2 

^— pc     + ej-  T! (|     - | o   ^PrJ (65) 

where 

e5=^z2 (66) 

It will be convenient to consider the mean energy per unit volume of the 
cylindrical shell.     Hence: 

W = (Wj + W2  -   W3)/abh (67) 
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In accordance with equations  (29),   (63),   and (65): 

W e,^(r -O 

+ e4ll
2 (e - e0)2 

e2Tl (e' 

2 

e0
2) (4 - e0) + e3 (e - if 

-^(e  -6„ )p? Bp Ac i 
(68) 

The Buckling Stress 

For equilibrium,   the derivatives of W with respect to the various parameters 
g,   Cj,   ^,   r\,   and z vanish.     From the condition 

aw 0,   it follows that c,   = 0 (69) 

Now c,   denotes the mean circumferential stress.     The parameter g appears 

only in the expression for c.   as given by equation (30) of report No.   1322-A 

(7).     The fact that c,  vanishes implies that g,   which describes a uniform 

radial expansion of the cylinder,   takes on such a value that the mean circum- 
ferential stress vanishes.     Further consideration of the parameter g is not 
necessary. 

9W From the condition —— = 0,   it follows  that: 

-^u-^-^^ (e - |o) h 
e,. r 

(70) 

where p,   as  previously noted,   is  the mean compressive stress. 

Let: 

el e2 e3 e4 
VlX y2      E^     Y3      Ea 

Then (7 0) can be written 

P = Eä z^rKe.u-^H^^.^ 
2^ nt    e 

(e - e0) h 

The mean compressive strain t  is  expressed by: 

i'«JDD TR 
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a 

d/^/iH 
As in report No.    1322-A (7),   it is found that: 

in _2 ^2     e   2. h 
'o      r e =Bp + Uz^(e£-e/)r (73) 

The further  equilibrium conditions 
\' 

aw    A     , aw    n   = 0 and  = 0 
d-q dz 

are to be satisfied.     The first of these is associated with the number of 
buckles  in a  circumference or with the width of an individual buckle,   and the 
second with the ratio b/a of the width of a buckle to its length.     It is not 
analytically feasible to use  these conditions  in connection with equation (68). 

The following method of arriving at the  critical value of p is based upon an 
extended discussion in report Mo.    1322-A (7).     Briefly,   it was considered 
that an isolated initial irregularity would increase in size and depth with in- 
creasing mean compressive  stress p.     It was  therefore  considered that the 
load-mean compressive strain curve,   with p as  a function of   t,   for a given 
small initial depth of irregularity would be the envelope of the family of 
curves for p as a function of f ,   drawn for a series of values  of r| by combin- 
ing  equations   (71) and (72).     On taking into consideration the possibility of 
jumps from one energy level to another,   it was  concluded that the critical 
values  of p would scatter  considerably,   as  they actually do in test,   depend- 
ing upon the depth of the initial irregularity and the characteristics  of the 
loading process.     It was noted that the value of p at the  relative minimum 
point on the  envelope of the  curves  for p as  a function of t,   drawn for ^0 = 0, 
was intermediate among the possible critical values  of p.      This minimum 
was  accordingly chosen as  the  "theoretical" critical stress,   because it could 
be  conveniently determined by finding  a relative minimum of p as a function 
of ^  and  r|.     It is necessary to employ numerical methods to determine the 
relative minimum value of p. 

In report No.    1322-A  (7),   the aspect ratio z of the buckles was assumed on 
the basis  of experimental  observations before the minimization of p was 
undertaken.     Here,   because  of the  influence of shear deformation in the  core, 
a suitable value to assign to z can not be  estimated. 

Equation (71),   with |     = 0,    can be written in the form: 

P = KEa| (7 4) 
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where 

32 

3z 
K=^[4Vl^

2-3v2e+-^+3v4Tl] (75) 

The mean compressive stress,   pf,   in the facings is  related to the mean com- 
pressive stress in the shell by tEe equation 

p = ^ V ^ (76) 

On recalling the definition of Ea,   it is seen that equation (74) can be written 

h 
Pf = KE, (77) 

For a relative minimum of pf,   the condition 

8K 0 must be satisfied. 

From this  condition,   it follows  that: 

(78) 

The substitution of this value of | in (75) yields 

64    ,Y3 9Y22 

K = —7 ( ^ + yA ri) 
3z2      n      32YJT!       Y4 (79) 

In equation (79),   K is a function of n and z,   which occur in the definitions of 
Jh   Y,.   Y-ji   Y^.   and Y^,-     By using the definitions of the quantities  E   ,   E, , 

and |j.m that appear through the symbols  A^   B_,   and C^ in the equations  (26), 

(27),   and (28),   the following  expressions  are obtained for y   ,    y   ,   and y_ 

(see equations (71),   (26),   (27),   and (28): 

Y 
y 

1      4096      4096 EY . E„ Q_2E , 
X      512 (z4-ii+ 81  +^-^1-  18^xvz2) 

Ey ^y xy 

i?z 

512 (81z4 ^+ 1 + 9z2^  -   18r     z2)      2048 (z4 — + 1 + T~-2<rzZ) 
y v y Kxy 'y 

(80) 
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Y2 = 

512Ex      32(z4^i + 1+!!^.2<r    z2) 
Ey t^xy xy 

(81) 

E. 

z2E. 
256Ex       32(z^+1+lJ-.2 .) 

y Tcy ' 

(82) 

In obtaining the expression for Y4 from equations (6 3) and (70),   it 
venient to introduce the notatioi 

is con- 

T = 3z4 + 3 fe+1: (Ex%x + ^xv) z Ex'  Ex 
yx (83) 

so that 

K4 = Ex T (84) 

and 

hT 
Ea      fl  + f2 

then 

32Xh^ (f1  + f2) 

i + ir^-d^J-ef + s) 
4 x    z y 

1 + ^ifx + ^Sy + ^^3 - d2
2)SxSy 

Exzi Ex2^ 

Buckling Stress of Sandwich Constructions with Isotropie 
Facings and Orthotropic or Isotropie Core 

(85) 

(86) 

For isotropie facings,   considerable simplifications can be made. 
ease 

In this 

Ex = Ey = (Ex(rvx + 2^xy) = E.   ^v = V = E/2 (1  + <r) xy 

^xy = V = ^ 

Then 
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1 +z 17 z' 
1      4096      512(z2 + 9)2      5i2(9z2+l)2      2048 (1 + z2)2 

1 z4 

512      32 (1 + z^) 2^2 

1 
,2.2 256      32(l + z')|.      I(dd        .2) s 

I + -_L1_J 2 (-4 + Sy) 
(3zJ -f 3 + 2z'^) E^    ' 

4      32\ h2 {i1 + f2) TidjS,,      t^S Ti2SxSy (d1d3 - d22) 
1 + j-+ +     ?—p.  

Ez2 E E^ z^ 

+ If 

(87) 

(88) 

(89) 

(90) 

■where 

T =  3z4 + 3 + 2z2 

2 A   E - _ ' 
'x _ 3X u „    rh 

f,x 
y        3X LL    „ rh 

(91) 

(92) 

After  some manipulation involving  substitution of expressions for  -yi .    Y7> 

Y,,   and -y .,   formula (79) for K for  sandwich construction with Isotropie 

facings  and orthotropic core can be written as: 

M, 
K = 

where 

21 

3X h^ (f1  + f2) 

M 2T1 + M^  Sx 

[I  + 1^4^ + M5T]
Z

S'K
Z

      
I 

+ -i   M7TI 

M 
64 

1 ~ ,   2 3z 
(Y 

^2 
3 "32Y, 

M 
T 

2"z2 

(dld3  " d2  )    ,1 

E2 z^ z^ 

(93) 

(94) 

(95) 

(96) 
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M4 = (-y+d3e)^ 
z 

(d^ - d/) e 

Sy H   rx 
e = ^    or     e = ~- 

4      1 ? 
dl  = 3Ez     + - (1  -  o-) Ez 

d, = Eo-z2 + - (1 -  <r) Ez2 

d3 = 3E + - (1   - 0-) E2 

(97) 

(98) 

(99) 

(100) 

(101) 

(102) 

If o- is taken to be ~,   then: 
4 

di   =3Ez2  (z2+i) 

d2=fEz2 

d3 =.3E (—+  1) 

(103) 

(104) 

(105) 

If also Yp   y  ,   -y  ,   and ^T are expressed in terms of z and 9 (Eq.    87,   88,   89, 

and 90) then the following expressions  can be used in formula 89: 

3|—   -;   i     =  J (106) 
M,   =—U +     2z 

r_L+   if  1 
L64z      4(1 + z2)2J 

12z' 3(1 + z^T      1 + z4 + 

128 
17z 

16(z2 + 9)2       16(9z2+l)2      64(1 + z2)2 

2 3 
M-, = Sz^ + 2 + — 

" z^ 

M3 = 8 ^9z4 + 70z2 + 9) (~2 + e) 

(107) 

(108) 
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M4 = 8   [8z2 + ! + (z2 + 8) e] 

= i [gz4 + 7 0z2 + 9] e M 

(109) 

(110) 

For constructions for which the shear deformation in the core is negligible, 
as it is when |j.        is very large and 9 is finite,   S    may be taken equal to zero. 

ü.x — _ 
Then expression (93) can be minimized with respect to jj,   resulting in: 

K0= 2 
'2M1M2 (1 + If) 

3\ (f,  + f7) h2 
(HI) 

Thus,   K    is a function of M,   and M2 and the stiffness of the sandwich.     It 

was found by computation that a relative minimum of MiM? = 0.24 occurs at 

z = 0.95.     The minimum buckling stress  is then proportional to: 

K 
5Q, 

where 

Qi = 
\ (f, + f2) h^ 

i + if 

(112) 

(113) 

K 
By letting N = -zz—,   the following expression can be written from equation (89) 

for constructions having any value of Sx: 

N = —: + 
4ii SOj (1 + Q2) 

M2r| + MoTi^ 
 + Q2M2T1 

1 + M^x + M5T1
2
SX

2 

where 

Q2=T 

(114) 

(115) 

It was found in Forest Products Laboratory Report No.    1505  (10) that the 
values of I + L and L can be expressed as follows: 

!ä 
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1 +1. 
-^ 

h3 _ c3  IZcd' 
1 - c/h J 

(h - c)3  (h - c)d2 

^ "   48       4 

where 

d = 
fi - h 

(116) 

(117) 

(118) 

After substituting these expressions in the formulas for Q,  and Q^ and 

simplifying Q.   and Q, become: 

12\ (1   -  c/h)2 

(1  - c3/h3) (1  - c/h) 
12cd 

(119) 

i(l   - c/h)4+ 3  (.1  - c/h)2 ^2 

Z Z 
(1   - c3/h3) (1   - c/h) - j (1  - c/h)4 - 3(1   -  c/h)2 ^j - i~- 

h h 

(120) 

In equation (11 4) Mj,   Mo,   M^,   M.,    and   M5 depend upon £ and 9^,   and Q. 

and Q?,   depend upon c/h and d/h.     Formula (1 14) can then be written with 

appropriate values of 9, c/h, and d/h and then a relative minimum value N 
found by choosing a series of values of z and r\. The facing stress at which 
buckling will occur is then given by: 

4N 
5Q r (121) 

Buckling Stress of Sandwich Constructions 
with Isotropie Facings of Equal Thickness 
and Orthotropic or Isotropie Core 

Factors  in formula (114) can be simplified for sandwich constructions hav- 
ing  facings of equal thickness.     Then d = 0 and after simplification 

(122) 
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N 

i (l  ' c/h>\ 
3  \1 + c/hj 

ally formu 

L 1 Mi + (i + 

and finally formula (114) becomes 

5Q. 
4     ^ 

:/hr M2r\ + M3T1'
:SJ 

1 + M   nS    + MrTi2S  2 

4     x 5        x 

.«-#:«,. I 

(123) 

(124) 

The buckling load,   which is proportioned to N is obtained by finding the lowest 
relative minimum of expression (124) with respect to T| and z.     Expression 
(124) can be minimized by taking a derivative with respect to r] and setting 
the derivative equal to zero.     This leads  to a sixth power equation in r|. 
Minimum roots of T| with respect to z and for various values of Sx ,   c/h,   and 
0 were determined by means of a digital computer.     Minimum values of N 
at various values of Sx and for c/h equal to 0.9,   0.8,   0.7,   and 6 equal to 

0.4,   1.0,   and 2.5 are given in Table 1  and shown as functions of Sx in figures 

4,   5,   and 6.     Also included in the table and figures are values of N for 
c/h = 1.      These values represent sandwich constructions for which the stiff- 
ness of the individual facings are assumed to be zero.    Although no actual 
constructions can be made of this type,   the values can be considered as 
representing the limit for constructions having extremely thin  facings.   These 
values of N were obtained as follows.     Substitution of c/h = 1 in equation (124) 
for N leads  to 

N = ^ 

M 1 + _L   /M2^+M3T1Sx N 

6x \i + M4T1SX + M5n
2sx

2/ 
(125) 

which has one relative minimum value for  T| = oo.      This minimum value is 
given by 

5M, 
N = i2/rsx M5 

(126) 

Substituting in this  equation the values  of M, and Mj-  given by equations  (108) 

and (110) yields 

s (^z + e) 
N 

i2yr sx e 
(127) 
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which is minimum for z = oci     This minimum value (for cr = 1/4;   hence 
X. = 15/16) is given by 

N = 
0.431 

3^ Sx Sx 
(128) 

Substitution of this value of N in equation (118) and using the value of S    for 

fj  = fj and c/h = 1 leads to the following limiting expression for p • 

4Eh 5 3X r^x       h      ' /1,Q. 
pf= T^fT • T^r- —< ^ ^x (129) 

For values of Sx ranging from 0 to about 0.6 it was found that equation (128) 
did not give lowest minimum values.     In this range of S    the minimum values 

were obtained from equation (124) by use of a digital computer. 

The value of N given by equation (128) and the value of the stress given by 
equation (129) are independent of the radius of the cylinder and are the usual 
critical values associated with shear instability of the core (15). 

The value of 6 of 0.4 and its reciprocal 2.5 were used in the calculations be- 
cause they apply to honeycomb cores oriented with the weak direction and 
the strong direction parallel to the length of the cylinder.     It has been noted 
from figures 4 and 6 that in the range of small values of S    where N is inde- 

pendent of c/h,   the orientation of the  core makes little difference in the 
value of N, 

Application of Theoretical Results 

The compressive facing stress  at which buckling of cylinders  of orthrotropic 
sandwich construction occurs is given by equation (77). 

Pf = KEx7 

where Ex is modulus of elasticity of facings in axial direction, h is sand- 

wich thickness, r is mean radius of curvature, and K is given by formula 
(79) as ~ 

Y3       9Y2
2 

K = 
64 

3z2 n     32^71 V4T1 
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where values of "yi.   Y  •   and Ya 
are functions of z according to equations (80),(81), 

and (82) and -y. is a function of r| and z_ according to equation (86) and K is 

taken as the least relative minimum with respect to T^ and z. 

For sandwich constructions having Isotropie facings of unequal thickness 
and orthotropic core K is given by 

K = 
4N 
5Q 

where N is given by equation (114) as 

,T      
5M1QJ N 3  r  + 

4T! 60^1 + Q2) 

MT T)   +    M , T|     S 

1  + M4r|Sx + M5T1
2
SX

2 

+ QzUzy] 

where Q,   and Q? are given by equations (119) and (120) and M.,   M,,   M,, 

MA,   and M,-  are functions  of z  according  to equations  (106),   (107),   (108), 

(109),   and (110) and N is taken as the least relative minimum with respect 
to T] and z. 

For sandwich constructions having isotropic facings   (Poisson's  ratio 1/4) of 
equal thickness and orthotropic core such that 6 = 0.4—or 6 = 2.5—or isotropic 
core (6 = 1.0) equation (1 14) for N has been solved for c/h = 1.0,   0.9,   0.8, 
and 0.7.     Values of N for various Sx values are given in Table 1  and in 

graphs in figures 4,   5,   and 6.     Then the critical facing stress is given by 

4N 
pf = 5Q 

h 
E - 

wher 2 

Qi*Lb,.z l/c^/h«2 +  c/h +  1 

and N is given in terms  of S    where 

-These ratios for 8  were chosen as  representative of honeycomb  cores  such 
as were evaluated in Forest Products Laboratory Report No.    1849. 

a.' 
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l6cfE 

45rhu, , 
fex 

and c is core thickness,   f  is facing thickness,   E is modulus of elasticity of 
facings,   h is sandwich thickness,   (c + 2f),   r is mean radius of curvature, 
and u. „     is modulus of rigidity of core associated with shear strains in the 

^ t,x 

axial-radial plane. 

The graphs can be used with little error for determining N for constructions 
having facings of unequal thickness,   provided S    is  calculated using formula 

(60) and Qj is calculated using equation (119). 

The analysis  may be extended to apply at stresses greater  than the propor- 
tional limit stress  of the facings by use of an appropriate tangent or reduced 
modulus of elasticity for the facings.     This entails a "trial-and-error" solu- 
tion involving use of the tangent or  reduced modulus  in the quantity S and 
elsewhere until the resultant facing stress is compatible with the stress- 
modulus curve. 

Results of the theoretical analysis fall approximately into three zones,   de- 
pending upon whether there is  no shear deformation in the core (S     = 0), 
some shear deformation in the core (small values of Sx),   or considerable 
shear deformation in the core (large values of Sx). 

For no shear deformation,   the buckling stress  is determined essentially by 
means  of the Isotropie or orthotropic theory (depending upon facing proper- 
ties) with the stiffness determined by considering the spaced facings of the 
sandwich. 

For large shear deformations,   the critical stress is associated with insta- 
bility of the core in shear.     This has been observed for  sandwich construc- 
tions in general (15),   and it has been found that the mean critical stress 
thus determined is the same,   regardless of the original assumption of the 
buckled shape.     The smallest value of Sx at which the critical stress is 

determined by shear instability of the cere,   however,   is greatly affected by 
the assumed form of the buckled shape.     The inclusion of the stiffnesses of 
the facings  If gives  rise to the family of curves for different values  of c/h, 

as shown in figures  4,   5,   and 6,   instead of a single curve.     If the stiffnesses 
of the individual facings had been neglected,   one curve only,   that for c/h =  1, 
would have resulted.     The percentage increase in buckling stress due to the 
stiffnesses of the individual facings  increases  as the  shear deformation in- 
creases.     For small shear deformations,   the increase is negligible. 
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From the reasoning involved in the theory leading to equation (7? ),   consider- 
able scatter in the experimental values of the critical stress is to be expected 
because of the effect of initial irregularities.     Similar scatter is exhibited 
by homogeneous cylindrical shells,   for the same reason. 

The possibility of failure by wrinkling of the facings at a stress lower than 
that predicted by equation (77) should be considered. 

The analysis in this report involves a number of approximations and assump- 
tions.    Such procedures are necessary until a more rigorous treatment of the 
problem is developed.     A completely rigorous treatment of the buckling of a 
homogeneous cylindrical shell is still lacking,   in spite of the noteworthy 
contributions of von Karman and Tsien. 

Tests of Curved Panels 

The large size of complete circular,   cylindrical shells having realistic fac- 
ing and core thicknesses and curvatures could not be adapted to the available 
testing apparatus.     Therefore,   axial compressive tests were conducted on 
rectangular panels curved to various radii.     The dimensions of these panels 
were chosen so that their widths and lengths were large enough to include at 

least one buckle of a size predicted by theory (b;»  and a» ) as shown r ' '  x        n zn 
in table 2. 

It was then assumed that the curved panel would behave approximately as a 
complete cylinder. The type of edge support (described later) was such as 
to produce no clamping. 

Test Specimens 

The test specimens were essentially of isotropic construction having facings 
of clad 24ST aluminum alloy on cores  of either balsa wood,   oriented so that 
the grain direction was normal to the facings,   or of corkboard of three dif- 
ferent densities.     Corkboard cores were chosen,   because their low moduli 
of rigidity afforded means of exploring shells in which sizeable reductions 
of buckling stresses,   caused by large core shear deformations,   could easily 
be obtained.     These corkboard cores had shearing moduli of 1,500,   950,   and 
320 pounds per square inch,   as  compared to 15,000 pounds per square inch 
for the end-grain,   balsa-wood core. 

\S 
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Dimensions of the specimens are given in table 2.     The panel sizes  ranged 
from approximately 70 inches square to panels 12 inches wide and 30 inches 
long.    Mean radii of curvature ranged from approximately 90 inches to 10 
inches.     The sandwich constructions had facings of 0.012 inch,   0.020 inch, 
or 0.032 inch thickness on cores of approximately 1/8 inch,   1/4 inch,   or  1/2 
inch thickness.    All constructions tested had facings of equal thickness. 

The specimens were manufactured by the bag-molding process.     Detailed 
description of techniques and bonding adhesives used in this process are 
given in Forest Products Laboratory Report No.   1574(3).     The curvature 
was attained at the time of molding by using a steel mold curved to the de- 
sired radius.     A strip of aluminum 1  inch wide and 0.032 inch thick was 
bonded to the facings at each end of the specimen.     This was done to facili- 
tate machining of the  specimen ends and also to prevent local end failure 
during the test.     The  ends  of the specimens  were machined square and true 
in a milling machine. 

Testing 

The vertical edges of the specimens were held  straight by loose-fitting wood 
guides.     These guides  were approximately 2 inches by 2 inches in cross  sec- 
tion and of lengths   1/4 inch shorter than the test specimen.     They were 
grooved in the lengthwise direction with grooves approximately 1/4 inch deep 
and wide  enough to allow the guides  to be slipped onto the  edges  of the test 
specimen.     No attempt was  made to clamp the  vertical edges by fitting the 
guides tightly. 

The lower ends  of specimens not wider than 30 inches were placed on a 
heavy flat plate,   which was  supported by a spherical bearing placed on the 
lower head of a hydraulic testing machine.     The heads of the testing machine 
were then brought together until the specimen just touched the upper platen 
with no load indicated.     Adjustments were made on the spherical base until 
no light could be seen between the ends  of the specimen and the loading heads. 
Screw jacks were then placed under the lower loading plate to prevent tilting 
of the plate while the load was being applied to the specimen.     A single thick- 
ness  of blotting paper was  inserted at the ends   of the specimen to help pre- 
vent local end failures.     The load was  then applied slowly until failure oc- 
curred. 

Specimens wider than 30 inches were tested between the heads of a four- 
screw,   mechanically operated,   testing machine.     No spherical bearing was 
used.     The specimens were cut as true as possible.     If light could be seen 
between the ends  of the specimen and the heads  of the testing machine,    shims 
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of paper or brass were inserted until the gap -was closed.     These wide speci- 
mens were also very long;   therefore,   small irregularities in the end bearing 
were absorbed early in the test without causing large variations from uni- 
formity in the stresses in the facings. 

Results of Tests 

The facing stresses at the failing loads of the curved panels are given in 
table 2. For later comparison with theoretical values, the parameter N 
was calculated for each testy specimen by using the formula 

N 
5Q iPfi 

/ 

4Eh 

where 

E =  10,000,000 pounds  per square inch (modulus  of elasticity of facings) 

The visible failures  of the specimens  were of a type caused by buckling. 
Large,   thin specimens actually showed large buckles,   which disappeared 
after release of load.     The appearance of these buckles always caused a 
sudden drop in the load.     Small,   thick specimens  showed buckling,   followed 
immediately by a crimping appearance at the edges of the buckle.     This 
crimping was undoubtedly due to shear failure of the core caused by high 
stresses induced in the  sandwich by the buckle.     Many of the thick speci- 
mens  exhibited no visible signs  of buckling but showed similar crimping. 
The rapidity of failure  occurring immediately upon buckling undoubtedly 
prevented visual observation of the buckle itself.     Similar behavior was ob- 
served for  cylindrical  shells  of plywood  (11). 

Comparison of Theoretical and Experimental Results 

The theoretical and experimental values of N are given in table 2.     A com- 
parison between them may be obtained by referring to figure 7 which shows 
the experimental values plotted against the theoretical values.     The scatter 
of points about a line representing equality between experimental and theoreti- 
cal values shows that theory and experiment agree within approximately +^ 30 
percent. 

In view of the inevitable scatter of experimentally determined buckling 
stresses that is associated with initial irregularities of shape and variations 
of material properties,   it is concluded that the agreement between results of 
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, tests and of theory is satisfactory.    The scatter is not as great for shells of 
sandwich construction as that observed for thin,   homogeneous shells  {fig.   44, 
report No.   1322-A (7)) or for plywood shells (fig.   3,   Forest Products Labora- 
tory Report No.   1322 (18)).     This reduction in scatter may be attributed to a 
greater total thickness of shell.     Thus,   irregularities that depart from the 
true cylindrical surface of the order of the thickness of the shell are less 
likely to occur in sandwich shells than in thin,   homogeneous shells. 

Conclusions 

The buckling stress of long,   thin-walled,    circular cylinders of sandwich con- 
struction in axial compression can be found with satisfactory accuracy by the 
formulas and curves of the approximate theoretical analysis of this report. 

Curved panels of sizes large enough to include at least one ideal buckle 
. 2 irr 2 irr 
(b  ?»     and a ?»• ) buckle at stresses approximately equal to those of a n zn rr 

long,   complete cylinder. 
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I1     "" ?» %* A* 5 

Ar    A2'   A3'   A4,   A5 

b 

B 

Notation 

length of buckle. 

1/Eb. 

defined by equations (42) to (46). 

defined by equations (52) to (55). 

width of buckle. 

1/Ea. 

thickness of the core. 

mean circumferential stress. 

1     _  Z(rxy 

^m Ea 

fj   -f2 

dj.   d2>   d3 

exx'    exy,     etc' 

ep   e2,  e3 

e4 

Ex,   Ey 

defined by equation (57). 

components of strain. 

defined by equations  (26),   (27),   and (28). 

defined by equation (64). 

defined by equation (66). 

Young's moduli of the facings 

Ex (fl  + fz) 

Ey  (fl  + f2) 

fl-   f2 
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thicknesses of the facings. 

quantity proportional to mean radial expansion. 
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h c + fj + £2. 

I defined by equation (49). 

lr defined by equation (50). 

k,   k parameters introduced in equations (31). 

K see equations (74),   (75),   and (79). 

Kj,   K2,   K, defined by equations (23),   (24),   and (25). 

K^ defined by equation (84). 

n Zn r/b . 

p mean compressive stress. 

p, compressive stress in the facings. 

q,   q introduced in equations (31). 

r radius of middle surface of the cylindrical uhell. 

Sx,   S defined by equations (92). 

T defined by equation (83). 

u axial component of displacement. 

v circumferential component of displacement. 

U strain energy of the core in the bending of the 
sandwich shell. 

^F'   ^M strain energy of the facings in the bending of the 
sandwich shell. 

w radial component of displacement. 

W. extensional strain energy. 

W, flexural strain energy. 
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r 
W3 

w 

Xx,   X      etc. 

V   ^Z"   V3'   ^ 

m 

e 

^xy'   V 

4> 

9 

virtual work of the compressive load. 

(Wj + W2 - W3)/abh, 

components of stress. 

b/a. 

ir/a . 

ir/b. 

defined by equations (80),   (81),   (82),   and (86). 

a parameter that is proportional to depth of a 
buckle. 

initial value of 6. 

mean compressive strain. 

coordinate shown in fig.   3. 

n2 h/r. 

modulus of rigidity of the facings. 

moduli of rigidity of the core. 

\i       (f.  + f,) 'xy v 1 Z' 
h 

6 r/h. 

6    r/h. 
o 

Poisson's ratios of the facings, 

defined by equation (51). 

S   /S   . y'   x 
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Figure  i. --Choice of coordinates on the surface of a 
cylinder. 
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Figure 2. --Nodal lines of assumed diamond-shaped 
buckling pattern. 
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Figure 3. --Section of a cylindrical shell,   where r is the 
radius of the middle surface of the shell,   c is the thick- 
ness of the core,   f| and f^ are the thicknesses of the 

facings,   q is the distance indicated in the figure,   and 
£ is the coordinate indicated in the figure. 
Note:   The curved lines are arcs of concentric circles. 

WAJB TR 6O-I33 
79 

v 

LJ 



-4 

IT)   Of 

X 
nJ 

Ö 
■■H 

tfl 
Ö 
o 

■ -I 
■<-< 

u 
3 u 

tn 0 
ß u 
o 
u u 

a 
0 

^ 4-1 
n 

-ö ja 

Rl u « o 
<-_. 
0 en 

w 
u s 

■B u 

^ JS >. 
u _, 
^ 3 

a- 
nr V 
C 

2 
u 

0 

tn 
-t 

X! 
u 

0 nl 

^3 
(1J 
3 s 
nl -o > c 
2 tn 

u • - 
•* & 
u M 

n 
3 tn 
oo ►■H 

. 
■..-UJIJ  TR  6O-I33 60 

U 



-,ö 

•^   trT 

a 
E 
o 

c U 
0 
u u 

u 
Q. 
0 
u t o 

T3 
C £ 
<Tl h 
■Jl 0 

U-i 

0 « 
m tn 
tH ai 
0) C 

•a J<! 
r u 

IS 'S. 
u , 1 

0 
Hl 
3 
a1 

M u 
ß 

3 'S 
u w 
3 00 

J3 c 

°s 
3 1 
nj T) > C 

1 rt 
Zi 1 to ' U 

• ■H 
0. in 0 

4) 
u 
3 0 

Ifi 
M 

■;:, 

UJ 



■o  of 

X rt 
c 

• n 

c 
0 

•c 
u 
3 
U 

in 
C 
0 
<J 

X 
CJ 

S 
■0 
c >fl 
(A 

U 

a 
0 
u 

w 

c 
o u 
en •a 

4-i 
<1> 

1 3 

>. 41 

WH 0 
O 

61) Ul 
c c 

.* fTl 
^i 

3 J3 
0 

■-H 

o # "*-< ■o 
c 

aj ifl 

3 W 

rü > c 
z 0 

1 en 
1 tn 

V 
o fa 
1) r 
3 0 
00 u 

WADD TR  6G-I33 



\ , 

0           o 

\ 

, 

\ 

o 

\    0             0 

X          o 
\    O       o3 
0  ^^       o 

ON. 
oN o 

o X       0 
o\oo 
00X   o 

^ 

^J CO to •sh c^ 
Ö Ö Ö o 

N lVlN3IAIiy3dX3 

o 

c> 

u 

z| 
CQ u^ 

Ci 0 

^ 
3 

-J i—i 
CO 

^C > 
to 

.» fc nj s ^ to tfc OJ 

to 6 
ki ■^ 

5: 
k. Q. 

'/ 
(U 

to 0 

c 
0 
to 

!-. 
n) ^ 
P 

«^ 0 

to U 

3 

>i 

vV^D TR   60-13' 

r «s 

- 

L 



OKGANIZATIOMAL DIRECTORY 

of the 

Forest Products Laboratory, Forest Service 
U. S. Department of Agriculture 

J. Alfred Hall Director 

L. J. Markwardt Assistant Director 

Florence Rose Steffes, In Charge Library (Madison Branch USDA) 

Claude A. Brown, Chief Fiscal Control 

Gardner E. Chidester, Chief Pulp and Paper 

Donald G. Coleman, Chief Research Publications and Information 

Herbert 0. Fleischer, Chief Timber Processing 

E. P. A. Johnson, Chief Physics and Engineering 

Kenneth W. Kruger, Chief Packaging Research 

Ralph M. Lindgren, Chief Wood Preservation 

Edward G. Locke, Chief Wood Chemistry 

Gordon D. Logan, Chief Administrative Management 

Harold L. Mitchell, Chief Timber Growth and Utilization Relations 

'IK 6O-I33 84 

lh 

K_ 

■ 



bECTIüN III 

FLEXURE AND TORSION  OF CCKPOSITS CYLINDERS 

V,  S.   ERICKSHI 

Air Force Institute of Technology 
For Materials Laboratory 

Supmary 

A solution to the problem of determinint the components of stress 
and displacement in composite cylinders supported as cantilever 
beams and subjected to flexural and torsional loads is given in 
this report. The type of cylinder considered is that composed 
of three circular, co-oxial, layers of different materials that 
are bonded at their junctures. Two main cases are considered; 
one in which the material in the center layer is cylindrically 
aeolotropic, the other in which it is isotropic. The material 
in the inner and outer layers is assumed to be isotropic.  By 
taking; the thickness of one of the layers equal to zero, the 
results are applicable to a two-layer cylinder and, by making 
the inner radius zero, they are applicable to a solid cylinder. 
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LIST OF ABBREVIATIONS 

The following is a partial list of the symbols used in this report: 

E : Young's modulus of an Isotropie material. 

E , E , Eg: Young's modulil of a cylindrically aeolotropic 

material. 

El = E, I, + Eplp + E^I^, if intermediate layer is Isotropie 

= E,^ + EzIp + E^Io if Intermediate layer is cylindrieally 

aeolotropie. 

e ,    .   .   .   ,  e Q: components of strain. 

F =  -■+ 2( cT  + 3 o zeJ 
1        (cX   - c^  )E Zr      ^ 

z9    zr 0 

Fn = (n + 1), ^zr + (n + 2) ^        n = i, j 

G  Shear modulus of an Isotropie material. 

G e, OQZ; 
G
zr

: Shear modulii of a cylindrieally aeolotropic 

material. 

GI r G,!, + Gplp + G,I, if intermediate layer is isotropic 

= G,I, + G0 lo + G-I, if intermediate layer is cylindrically 

aeolotropic. 

2(1 - ^r crze)(3 ->c)(<rzr - 2^ze)    (i - j-^ cr2e) 
^ =  25 ——— + i2  

^ze-^zr) e 
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List of Abbreviations (Cont'd) 

I    ^   ;    ^  ^e 

«n = (n + l)C(n + 2)1 
1 " ^ez cr2e 

- (n + i)i ^rz^r 

c^«,. + er«, cT er e* ^ ze 
^ 

n = i, J 

^ = ^ (v - i.) 
i = (i +/<t)?   . i 

2&m 

i  =-(1 +A)2    - 1 

k = 
0

fe^ 

zr 

K^ = f ^ - (n . 1) ^1 - (n + l)(n + 2) ^ 

^--£^.(^1). (n + 1)(n + 2)% 

= -^6 F    _ (n + l)£Vg      (n +l)(n + 2) 
Ez      n ^ ^  

^f : length of cylinder 

m    : index denoting 1, 2 or 3 

M : applied torslonal moment 
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List of Abbreviations (Cont'd) 

n    index that ranges over the values 1, 1, J. 

P  : applied radial force. 

r_ : outer radius of layer a. B 

u', u', u'  : ccnponents of displacement associated with derived stress 
components. 

#  *■  # u , u , UQ : components of rigid body displacement. 

"z = ^ + "r' ^ = ^ + ur' ^ :: ^ + "©' coBponents of displacement, 

z, r, 0 : cylindrical coordinates. 

rm-l 
^^ez^ze 

/ m "  r,, 

C7~"in    :    Poisson's ratio of an Isotropie material. 

£ The value of Poisson s ratio vhen this ratio is assvned the 
same for each layer. 

(<     >  sf a.'   '   '   '  ' ö'tw   :    Poisson's ratios of a cylindrlcally 
zr        re ^       aeolotropic material. 

)      : A symbol denoting sunmation over the indices    n. 
12- 

v-    , .   .   .   ,    LQ^   :    Ccm^KinentB of stress. 
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INTRODUCTION 

This report deals with the problem of determining the ccmponents of 
stress and displacement in composite circular  cylinders under flexure and 
torsion.     The composite cylinders under considerution are composed of three 
co-axial  layers of different materials.     These layers are bonded together at 
their junctures so  that at  the   junctures the components of stress and displace- 
ment are continuous,,    The materials of which the inner and  outer layers of 
the cylinders are composed are assumed   to be Isotropie while the materiel of 
the intermediate layer is  treated  in one case as Isotropie and in the  second 
as cylindrically aeolotropic.i 

The results developed here are applicable to cylinders  that are long in 
comparison with their diameters.     This restriction is usual for  solutions of 
the present  type.     There are no further restrictions on the dimensions of  the 
cylinder or on the relative  thicknesses of the various layers.     Thus the 
results cover  the range from a cable-like cylinder with a  solid core to a 
hollow cylinder with walls  that are thin.    Also,   by taking  the thickness of 
one of the extreme leyers as zero,   the results apply to a cylinder composed 
of  two layers. 

The solutions of the differential equations of equilibrium and compati- 
bility that are used as a basis for the analysis have  been previously derived. 
For   the case of   three Isotropie  layers results could have  been obtained by 
methods developed  by Muskhelishvili and others.?    The explicit results given 
by Muskhelishvili,   those for a cylinder of two Isotropie layers with equal 
Foissen's ratios,   have been compared with  the  present results for  this case 
as a means of checking the formulas developed  here. 

By way of arrangement,   this report is divided into four parts,   the first 
of which contains an enumeration of the equations of equilibrium end compati- 
bility,   the boundary conditions and the conditions imposed upon the stress 
resultants and resultant moments over sections of the cylinder perpendicular 
to the axis.     The  solution of  the problem for the case of an Isotropie inter- 
mediate layer is given in Part 2 and Part 3  contains the   solution for the 
case of a  cylindrically aeolotrcpic  intermediate layer.     In Part 4 the results 
obtained  under  the   assumption of  equal Poisaon's ratios  for  the materials 
of  the three layers are given for  the cases considered in Parts 2 and 3« 
These results are considert-bly simpler  than those for the general cases and 
may  serve  for approximate use. 

i Beading and Torsion of Circular Cylinder Cantilever Beams of Cylindrically 
^eolotropic Material by W.  S.   Ericksen,  Journal of Applied Mechanics,  June 195^« L 

- Some Basic Problems of the Theory of Elasticity by N.  J. Muskhelishvili, N'* 
P. Noordhoff Ltd Groningen Holland 1953. Ip 
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The writing of  this report Is motivated mainly by the applicability 
of the results to sandwich cylinders.     In this applicatioti it is possible 
that simplified formulas may be obtained if the intermediate, or core 
layer,  is  thick and of low density in comparison with  the outer layers« 
Simplifications should also result if the thickness of each layer is small 
compared with  some standard radius,   say the radius of  the mid-surface of 
the cylinder.    These simplifications are left to be made, where possible, 
in individual applications. 
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1.  FORMULATION OF THE PROBUM. 

Let the axes of reference for a cylindrical coordinate system 

(z, r, ö) be fixed In the cylinder with the longitudinal axis in coinci- 

dence with the axis of symmetry of the cylinder as shown in Figure 1. 

As indicated in the figure the symbols r and r, designate the inner and 

outer radii of the cylinder, respectively, while r^ and r« denote the 

radii at the junctures of the layers. Ihe layers are numbered 1, 2,  and 

3, according to the convention that the one for which 

m-1 
z_ r £. r 

is layer m. These layer numbers are used as subscripts with various 

symbols to associate the quantity designated by the symbol with a given 

layer. 

In the preceding notation the equations of equilibrium are given 

as follows: 

9    L rrm . 1 P I r6m   ^ L-  rzm  L  rrm - ^ 60m 
 T-=  + TTS  +  rr-  +  = 0 r    99 ? z 

1 5 k ©9m  c  7 r9m  ^ I ©zm . 2 ^ 
F  ^-S  +  Tr  + —pi  + F ^ rem = 0 

Pi zrm , 1 r- I ©zm   - i   zzm . 1 + -. p r    r   ^ 6 
 + i^    =o, 
z    r  rzm   ' 

[0 

m = 1, 2, 3 
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The compatibility conditions are 

92e rnn 
+ 1. 

9 z£ 

9     erzm 
a r^ 9r9z 

'zzm 

_!_ 'g     e2zm + 9     eeem _ 2  P     e9zm      ^ f   "zzm _ 2    f e rzm 

a e- S'z2 rae9z       r     9r 
= 0 

_9 9 e. S» e 9 er9m _   a_ eezm _ i   ( ____, 
,? z 5» r r ^6 

zrm — e 
"ezm 

1  5     eZ2m       1      5  « + i ^__ 
rPrPO        r2        5 9 

ZZffi      -      Q 

^z 

[0 

[0 

CO 
d 

9* 

-9 ^ e99m ) 5 erein 
^9         ^ rrm 

2 
+   ?9 

1 
r 

5 erm       # erein      2 . 
?9                >          r    rem =   0 

9 . 1 
r 

i 

^(^Bzm) ^ezrm' 
99       - 

9 1   ^   errm 

L!   ?e 

9
 erem 
?r 

d 1 — r 
P(reezm) ^ezrm" 

■ 

I      L- -' J 

1 
9Z 

"2 (r eeem)       ^ er©m 
P r                 p 9             errni 

i— —i 

w 
-2 e e 

r    r9m 

m = 1,  2,  3- 

3C8J 

H 

p^ 
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3 
Let the cylinder be fixed- at the base 2=0, and be subjected to 

a force P directed along the radius 9=0 and a torsional moment M 

at z -yli .    Oie conditions imposed upon the stress resultants and 

couples are then 

JL      ^      2T1 r   -. 
(1        cos e - T, 0      sin e)r dr de = P 10 zrm ozm i_   ~t 

^1     Vl 0 

3        r„        2 
Y_    f     nzzm

r2 cos edr de =-p (/-z) [n] 
m=l      r    .    0 

m-_ 

£   J      J^ezm1-2^46^ L12J 
m=l     r    ,  0 m-1 

>       J J (^-znnSln 6 +T6ZIBCOS e)r dr de = 0 [13J 

m=i     r    ,    0 
m-1 

V     f      f^zzm r2 sin e dr de = 0 \lkj 

3       r«       2^ 
f"    J Jazzm r dr de = 0 [15] 

»=1      rm-l    0 

^With limitations discussed in Section k. 

WADD TR Go-132 94 

I 

L 



The boundary conditions to be Imposed are that the outer and 

Inner curved surfaces of the cylinder are free of stress and that the 

components of stress and displacement are continuous at the junctures 

of the layers.  Thus if the synbol ^m(z, r, 9) designates any of the 

stress components T ,  \..   , or T   and if VL{zt  r, e) designates mn    rfem     znn       m 

any one of the components of displacement u   11   or UQ^ the conditions 

Imposed are 

\ (z, T^,  ©) = 12 (z, T^  9) 

Ig (z, r2, 6) = 1  (z, r  6) 

^3 (z. 5-3, e) = 0 

H 

and 

Oj^ (z, r^^, 9) = Ug (z, r^^, 9) 

Ug (z, r2, 9) = u3 (z, r2, 9) H 
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2. RESULTS FOR IHREE ISOTROPIC LAYERS. 

The stress-strain relations for the case of three Isotropie layers 

are written 

zzm zzm m  rm ^ m   99m. 

'rnn  ^    aa  zzm   rrm '  m  98m 

'rem 

^ m  zzm 

(1 + cr) 

rem 

ezm  2^ ^ ezm 

e   = 1 ^ zrm  2G   zrm m 

m  rim    00ni M 

m = 1, 2, 3- 

The components of stress given by the folloving expressions satisfy 

the equations of equilibrium  1 , 2 | and 3 , and by the use of 

relations j iSJ they also satisfy the compatibility equations  U  to 

9 I inclusive. 

[19] 1 = (8 cr A + C ) r (X - z) cos e 
"- zzm     mm   m 

%   /? 
(2Arar - 2 -*•) (X. - z) cos Ö ■ 1 rrm 

2B 

^ee« " (6Amr + ^T2) ^ _ z) cos e ' 

^rem = (2V - —) (xf - z) sin 9 
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1 
znn 

+ ^ + 3<^ +, 

+ W- (3Em m 
20" G  )r cos 9 H 

i J + JS - 3A 
ezm       Lm        r2 

£7" m 2G_ 
+ —2(1  -^   ) r- 

m 

-3C_      E 2 
_2 ( Ji - 2 CT   G  )r    I   sin 6 + D^GL, r H 

Iliese partlc\ilar components of stress prove to be satisfactory for 

the present loading conditions. They may be derived by the methods of 

Section 3 of Reference 1. However, the fact that they satisfy the con- 

ditions of equilibrium and compatibility is readily verified by direct 

substitution. 

When the components of stress are of the preceding forms the com- 

ponents of displacement are given by the expressions that follow.  In 

these expressions each component is separated into two parts, the first 

of which is primed and designates the component directly associated 

with the given stress components, while the second part is starred and 

Thus represents a rigid body displacemen 

'    * 
u  = u  + u  ... 
zm   zm   zm. 

r 
25 

where 

u  = u  + u 
rm   rm   rm 

u  = u. 
©m   wi1 + uem • 

u za 

Cm  ,/  .2  Jm 
51" 
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As 
IE (l-2^1)(l+^)+^ 

K^1 +0     L™ 1 ,~l m m    +   ni I 1 

m 
G

m      r 
ID   J 

^ 

cos 9 

2cr   _ Jü 
m 

W 
rm 

ra 
Jl (1 - ^m)(l +<rm) -^J2|r2(/- z) 
E m m 2E_ m 

m m 
E r" m 

cos 9 t] 
Öm 

C-(Y. z)3+   i^(5-^m)(l+ö-)-^?r  (c-   z) 
^ •\ 

2E m 

V1 +^m)^ " 2) 
E r 

m -] sin 9 + D rz m 

and 

zm .J     r cos  9 - S    r sin  9 +     Y 

u^. =  ^™ +/i«z)   cos 9 + (y      +  5   z)sin 6 rm m    / in m m 

"em = -^m Vmz)  sin 9 + (^ m +c5mz) cos 6 + ^ inr. 

[30J 

>] 
"I 

33 

The constantö appearing in expressions 

[28 J   ,    L2.9J    and   [30] 

I 111   ,      12      ,      16        and   [17 |   as follows: 

?(fi r -  1 Ai= -zr L(6 2 -^i^^^ + ^3 "^i^ s^J 

^ = -^ L^l "^^l1!    + (^3 -^Vlh] 

19     through   121+j and 

are determined explicitly by conditions 
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p^3 r 

Bi = Vo 

B3 = V3 

— ^l1! + ^^ +   ^I3) 

M 
Dl " D2 ~ D3 ' 2(G1I1 + G2I2 + G3I3) 

^ = TT (r
m "  Vl > 

^'^ i2V _36 

:, ■ '01 

37 

38 

_39 

^3X3) IfO 

^1 

^2 

^   I    +   Ci' I 
2 2       '33 ^l1!" W *?{_ 

+ ^3I3^1Il( ^3  -^l)2_ 

1        8(1 " ^-^ _ 2    |l ./(2"m)l I" +^        ' + ^2  ^ 
V^m 

anä 

s. 

p.= 
m-1 

m m 

^ 
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Having made these determinations the following expressions may be 

evaluated: 

3   vl J« = t
Ti\   "'a -3 

2  "    2 -^L   X    -    r2^-   A 
113 2     3     1 

1    2l 2    3       1 \ 1      1      ll 
r -O.    A 

1      1   v3 
r^I   \ 

2       3      1 

Jl = - 
r     - r 
1       0 L- 

2 14- 
-Jir5 - Niro 

J r^  + L    + N r^ 
2 12 2 1 Vri + ro> 

3 r2 
3 

J
2
r2  + L2  + N2r2 - N3(r| + r2) 

2 U 
L3 = - J3.-3 - ^ 

where 

m 
m     B m   L 

3Vm
+2G

n
(l~^t   +8fi3^-2^mGm 

2(2-m) 
^r7 = N i i - r ' m       m m 

1 + ^ 
] 2(2-m) 

N   ^   1 + ^ 
2 m 

m -G        1 - ^ 
2(2-m) 

m V- 

H 

W 
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- E ^^ki.^,^ K 
C  ( E 

.  ° J -S - 2 cr 
+ 8^ ] Gm 

2(2-m)  (^ 

1 +^ m 1+^ 

^ 

^(2-m) 

m 

^H2.m)l 
1 " ^ 

Conditions {_ lOJ  13 ,  lUJ and 1 id have not been Imposed in 

the determination of the components of stress and displacement. Among 

these [ lOJ is Implied hy [_ 3 J , [_ 1J and by ^l6j applied to the 

components^  , while the remaining conditions, (13 |> M-M ' and 

L15J »  are satisfied identically by the forms fli ,  [23J  and |2Ü| 

The constants appearing in expressions  31 * I ^J "^ ^ 

depend upon the method of fixing the supported end of the cylinder 

for their final determination.  Ihey are interrelated by the following 

expressions: 
o/2 (1 +^i) (1 +^1) 

u   -u    o^h(1+^)       <il£3J \ 
^3       ^2 r2 E2 ^3-^ ^ 

^ =^ + 2r
2 (^üifi) M

1
 

+ ^1^ i 
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r" 

E. 

1 2        % 

^1 '    ^  "   ^ 
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RESULTS FOR ISOTROPIC INNER AMD OUTER LAYSRS WITH CYLINDRICALLY 
AEOLOTROPIC INTERMEDIATE LAYER, 

For the Isotropie layers, 1 and 3,   the stress-strain relations are 

given by I 18 I , and express! 

eure adopted as the forms of the components of  stress and displacement. 

äions  19  to  33  , inclusive, m = 1, 3, 

The stress-strain relations and the expressions for the components 

of stress end  displacement for the intermediate layer, 2, are taken 

from Reference 1. Since the notation for the elastic coefficients 

differs in form from those for an Isotropie material, the subscript 2 Is 

not used with these coefficients and the stress-strain relations are 

written 

e 
'zz2 ~ \    l   zz2      Sp  L  rr2   Eg   ©02 

'TT2  *        E      lzz2 E 
t rr2 

a~. 6r ^ 
% 

ees 

cr. ze 
-©62 

7 
cr~ r© n 

zz2 ■rr2 + i-^t e©2 H 
-©z2 " 2G 

.1 
r© r©2 

-©z2 

-2r2 

2Gez ez2 

1 -1 
5S    z^2• 

zr 

Ttie  forms of the components of stress are taken as follows: 

n L zz2 X! ^V11 ^- z) COS e w 
k 
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^f   = \      S <n + l)rn (^C - z)cos 9 lrr2  /n  n 

^   = ,v— S (n + l)(n + 2)rn (^-  z)cos 6 
l'ee2     £n_ n 

^re2 = X" Sn(n + l)rn ^ " z)8in e 

-ez2 

k-l      -k-1 
-kT r   + kT r 

k       -k 

K^^ CV+ 2Gez
(n + 2)Hn]: h+1 

(n + 2)2 - k2 
sin 6 + G„ D r 

Gz 2 

zr 

k-l     -k-l 
% Tkr   + T k

r  + 
on [(n +_ 2)Fn + 2G^ Hn jrn+1 

(n + 2)2 - k2 
■cos e 

In these expressions the symbols S , for n = 1, i and j, T, , T , and 

Dp are constants that are to be determined by the boundary and end 

conditions. The remaining symbols, together with i, j, and k, are 

defined under the List of Abbreviations. 

The components of displacement for the intermediate layer are each 

separated into two parts as in 

In these formulas the starred components are given by expressions 

Formulas | 25 I IsöJ , and I 27 I  . 

components are given by expressions 

31  ,  32  , and j 33    with m = 2. The primed componerits are 

given as follows: 
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u'  = 
z2 

is^ci-zr 
^n1-' 

n+2 

/n      (n + l)(n  + 2) 

+ 2a55k J m
 k      -k 
V   - T.kr 

Sn lin + 2)Fn +  gG9zHJrn' 
£(n + 2)2 . k21 

+ kV^  __n_ 
^-  (n + 2) Rn + 2)2 . k2 

r2 

u' 
92 

■S1K11(y-Z)3   ^_ S^^^C/.z)" 

6        22_"~ n + 1 cos © 

os 6  72 1 

SiKn^- z)3 K ^K^^} n+l (-/- z)' 

+D2rz, 

sin 6 

H 
The constants appearing In the expressions for the components of 

stress and displacement for the three layers are determined as follows 

ly the use of 

associated with the bending of the inner and outer layers are related 

to the coefficient Sn for the intermediate layer by the equations 

n+3 

11  ,  12  ,  16  , and  17  • These directly 

Vl = ^XSn(n+l)rl 

^—TX] 
sn(ii+i)rr3 

C
l      C3 

IT - E~ - S1K11 
1        3 
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With the use of these relations the constants S . for n = 1 and 1 and n 
j, are evaluated as the solution of the following system of equations: 

öi<r-1A1i1 + <3-3A3I3) + c^ + c3i3 +7r^- s^4+3yl   ! = _ p.  IVj 

2A.        ( 4    If I 
(1 +^:) M3 " ^ CTjr n - r _ 

K, 1  1 
^l^l 

/n  n + 1 

^1 

\    2n   3n 
n + 1 
Gre 

>r. 
n+3 

2A, 
^d + cT )\{3 - ^ <rj r     + r 

3^- 
(f3c3r2 

I n + 1 1 
K  + K  + 2_Li 
2n   3ß   G Ä rö 

n+3 

Also 

D1 = D2 = D3 
 M  

2 FG I + G I + G„ I 1 u i i  33  ez aJ 

H 

H 

The remaining constants in the expreasion for the components of 

stress and displacement, exclusive of those that determine the 

rigid body displacements, are given in terms of the preceding con- 

stants, as follows: 

T,    = 
TlA 3ri     r2 

k-1 'T3Ä1    ?! 
k-1      2 

*       r\     \ ^k-i ^-k-i     n     )    „-k-i   k-i H 
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-n    ~     k-1 2 f7 y\. r      r ^     2 k-1 -TL  r r 
3 11     2 3     112 

-k " ~     k-1 -k-1 
^-1^3rl    r2        -^3^1rl      r2 

[e5] 

"""^.^^f-'-^a.^2-"1 

92 

/Vn m «     ^ x , 
6z 

2(2-m) 

m 

and f 2(2-m))    1 2(2-in) 

m 

A £r~m
E

m U(2-m) 
.0^ J» (1 + ^m)(3 + 2 d^ + -^2 _ ^m        ) Jm\ E m Go 

1 - P 
2(2-m) 
m 

\ 

B- fn + 2^ . k2 1 n (n + 2)GJ
1
 

+^ )| 
2(2-m) 

(n + lY - k^ zr 

rl      ril ^_ (n + 2)2 - k2 

2 2 

Li = -Jiro - Niro- 
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T    =   .,  1   J T r^ + T .r?-1 + ^   Sn 1(n + 2)^ + 2Gez 
3 - r| - r| )   k 2 

?        ? 
-N_(r    + r 

3    2        3 

-k 2 
r—     n 

ZfL_~ 
*r]rr3\ 

(n + 2r - k 2      ,2 

and 
2 4 

L3 = -J3r3- W 

w 

Conditions      10      ,      13      ,      1^      and        15jare again satisfied 

for reasons enumerated in Section 2. 

The constants that determine the rigid body displacements are 

interrelated by the  following equations: 

2A- 

c<, -—2(1 + 0~)Jfr    =c< 
3 

2Ai 

2        v2 

< 

H 

J3 

^1=   ^2 =   )3 

2       -   3 
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-* 1  -^2  ^3 100 

1+. RESULTS FOR EQUAL POISSOM'3 RATIOS. 

When the Poisson's ratios of the three layers are equal, the 

expressions for the components of stress and displacement are consider- 

ably simplified. These simplified results are given in this section 

both for the case of an Isotropie intermediate layer Tind that of a 

cyllndrically aeolotropic intermediate layer. 

Since the effects of varying the Poisson's ratios are expected 

to be small, at least within the ranges of these ratios found In commonly 

used engineering materials, the formulas of the present section are con- 

sidered to be applicable for obtaining approximate results for the 

general cases of the two preceding sections. 

Case A, Cylinder with an Isotropie Intermediate Layer with 

^"l = ^2 = ^3 = ^ 

When the Poisson's ratios are equal formulas I 3^1 through  39 

reduce to f      i 
JLOlj A = A = A = 0, : 

12   3 •- 
and B ' = B = B = 0. 

12   3 
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Also, from 

where 

w and ^3 

E1  E2  E3  El 

El = hl1  + E2I2 + E3I3. 

The components of stress with D from  41  , then reduce to the forms 

"1 

■1 

-E P   ,; 
= -=2-r U- 2)co3 e. zzm   J^-1- 

= 0    =7    =o. 
rrm   L eOm    rSm 

105 

1106 

1 
zrm El 

- ,   L   r2 

r 
cos 6, 10' 

and 
1 Özm 

P_ 
SI J_ _ t| + r (E - 6crG )  sin G + -2- _ m  r2   8^ ' m     m'J        2GI 108 

where 
GI =0,1-, + G^L, + G-,1 I1! + ^h +  G3I3 109 

and where 
J   - ^— m    ? H 

LB
51 

m 

r 
The constants J and I. are determined "by ]   h6\    to :1 51 

n 

with _P 

^ = 5EI(3Em- 2crGm)' 

111 
!_ 

,   inclusive 

112 
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_ of 2(2-™)]   ( 2(2.m) ] 

+ Nc l+^
( 

2-m)        G, m 2(2-m) 

3G2    I1 "'I 113 

I—      —! 

and with  /\     and_rL     as given by      55      and      56      ,  respectively. 

The  components  of displacement associated with the preceding stress 

components are given by the expressions 

N2     -3   .  ' _       \ 
u       =^1  lU^.^^cr.^^ 

zm      El 
rn 

-I-   'L - -5 1 kos e 

u' = z.  u 1 Elf + ^:r (- --z) 
mT EI L 

u-     -   £   I       U - 03    +0-    r     U-  2) 
em     EI L        5 2 

cos  6 

sin ©. 

w 
M 
M 

Formulas  31  >   32  and  33 | for the rigid body displacements 

remain as given. 

As an example of the manner in which the rigid body displacements 

may be fixed, consider the conditions 

uz = 0 for z = 0,  r = r , 0 £: 6 ^ 2'^ 

ur = 0 for z = 0,  r = r^, 9 = ± -^r- 

■ue = 0 for z =0,  r = rj^, 6 = ± -—- 
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r--" ■ 

These conditions fix the plane of the circle z = 0, r = r, and the 

two points on the circle at © = + -^- . With these conditions, the 

constants in expressions  31  ,  32  and  33 take  on the values 

^'i{4-¥} ' [ne] 

^m
= ^m 

= cS-m=tm = o [120] 

It is observed that expressions  115 » H6  ' M-18  '  119 

and  1201  are independent of the index m.  The components IL, and are independent of the index m. The components IL, and UQ 

for a given layer do not then depend in a special way upon the elastic 

coefficients for the material of the layer but rather upon the elastic 

properties of the composite cylinder. Therefore, the deflection of 

the cylinder. 

u = IL. cos 9 - UQ sin 9 w 
is given by the formula 

p R ̂  -  z)3 +^- iz.  z) r2 cos 2 9 ] 
+ ^ m + JmZ - 

Mzr sin Q 
2GI 

[l22] 

with Kst     and    i     given by    1118 ^ m    - m i 119 , respectively. With and 

the use of the latter formulas the deflection at the end z = ^<. is 

obtained in the form 
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4 EI   L 3        ^T^ (6Ö--3 ) 

£ T'  (/A    +r^ ) -/T'   ( A    '-^ 
1       11     3 2       3 

^iA 2        3      1 

2GI 
r sin 9 

where T7' = 
in 

with 7^     given by 
m 

T    El 

P 

113 

Case B,   Cylindrically Aeolotropic  Intermediate Layer with 

^1 =^3 =Crzr  =^ze    =C3'- 

H 
124 

When £)"     =   C3   _     the  quantities F,   and H    are undefined.    However, zr ze ^ 11 ' 

the  results of Section  3 are applicable under the present conditions 

with 
s1  =  s2  .  S3  .0 

and with 

^i= - h 
and 

S1H1 - siK
2i = siK3i = - f siFi = ¥ 

where now 

EI = h_l1  + EzI2 + E3l3. 

- 

L125l 

M 

H 
- The remaining Poisson's ratios of the intermediate layer are not 

assumed to be equal. ;. 
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With the substitution of j125 

inclusive, it Is found that 

and [l26 into 75 to  79 b 

\ = A3 = B1=-B3=0 [129] 

and 

^1  ^2    P 
[130] 

The  components of stress for layers 1 and 3 are of the forms 

r *i      r „1 -      ■ 105  to  108 inclusive, with J and L defined below and, since 
_ J     L _ ^ 1— —\m 

the constants D are now determined by m 83 ,  with 

GI = G1I1  + GezI2  +G3I3. M 
For the  intermediate layer, 

^ zz2 
E ^ '' 
 — r( *€ -  z)c06 9 

El 

-r2 992 r92 

13^ 

[.33] 

f\j p 
l-zr2  = El 

T,^-i           r-k-i     (3S2 - 2crae2K 
  2  xk- -k 

Q   -   V' 
cos 9 M 

rl -P 
Lez2      ET 

k.l                   .k-i    (k2E    -  6^G     )r2 
kTk  1 - kT_k r +  

2GI 

9 - kc 
sin e 

H 
where 

T, EX k 

"k =^ 
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r 
T-k

EI 

-k    F 

with Tk and T_k determined from  8
1;  and 

the determi.nations of these two constants 

137 
_ _1 

J. 85       ,  respectively.     For 

i m 

■(3Jim - 2 ^Gm) / 2(2-m)  I _2(2-m) 

(3S2   -  2^G@2) 
+  g-TT?  

2(2-m) G      j 2(2-m) 

m 3G     ! m zr 
138 

sind the quantities-TL      and ^     remain as given by 
m m 

86 and 

respectively. Having evaluated T and T' , the constants J and L 
K     -k mm 

are determined from the equations 

J = —? 
1 L,  k+1      mi     -k+1       (3E    -2trGez)r .2        2 

.  I  k 1 -k 1 2 V 1      ^^ 

'Gz^   *2 

"1      "Ot 9  - k J 

<    2 '   h 
L'   =  -J    r     -  N r 

1 10 10 

1 fr   r
k+1    +T.     r-

k+1      (3EZ  - 2<r G^)  r! 

-N3(r2+r3) 

,   2 ,   ^ 
L    = -J r    - N r 

3 3 3        3 3 

139 

where 

^ = ^3^-2crGm), iko 
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The components of displacement for layers 1 and 3 are obtained 

from j_3lj    ,   fssl    ,    JJ3]   ,    fllM ,    flisl    and   lud.   Those 

for the  Intermediate layer are obtained from    Ml]     to    |33J      inclusive 

and the expressions 

U- z)gr   Acr- _™z -2^GezL_3 
z2      EI   L 2 +\ !'T"_3(9-k2)G, .— J 

zr 

k 

^"z + c^Kr   " T-kr 

u'    = Fr r2      EI 

cos 6 

2 

92    ET   L 

COS   9 

(^-  z)3   ,^-r2 

sin 9 + 
Mrz 

For the case under consideration,  conditions 

evaluations 

[-] lead to the 

-P r/3    .rrf/l 
o( _ - EI  [JV 2 

m 

-?     .L 
m = EI 

-c 3E„   - 2J-G, ©z 

zr 

and 

";"   ' 1 ^ " 3(9 - k2)^ 

^   = i5  = </ = 6   = 0. m m m m 

2        v k-1 -k-1 
r £_ T'r -   T'   r 
rl       G„      k  1 -k 1 

9z H 

C1"6] 
The deflection of the cylinder  is obtained from 

use of      IMH     and      1^5       •     At z  = ^ the deflection is given by 

[l22] with the 
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:= / " EI 

^3 C   2 
Ä      +      _    , 

3 3 
2 &'   - 

3E
z-

2^'G9z 

(9 - k2)G^ 

/9 1   .     v      k+1    -k-1       ^      -k+1    k-lv -2 2  , x /n    NI 
+k/ K(A ^i      rg        ^Vl        r2    )   - T3rl r2  (A 1+ ^iM 

Mi 

9z 

r sin © 

. K      >      k-1    -k-1   jo       i -k-1    k-1 
(^lA3rl      r2      "        3Alrl        r2       ) 

2GI M 
where 

T El 
rnl                HI 

m '     P 

with T    defined hy 
m 

138_ and El by w 
[ ii+sl 
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SECTION IV 

BUCKLING OF SANDWICH CYLINDERS IN TORSION- 1. 2 

By 

H.   W.   MARCH.   Mathematician 
and 

EDWARD W.   KUENZI,   En-gineer 

Forest Products  Laboratory, — Forest Service 
U.   S.   Department of Agriculture 

Summary 

This report presents a mathematical analysis leading to the critical stresses 
that determine the buckling of cylinders of sandwich construction in torsion. 
The analysis is complete for cylinders of finite length having orthotropic 
facings  and orthotropic cores.     Formulas are given for  sandwich cylinders 
of finite and infinite length.     Curves are given for buckling coefficients for 
cylinders with isotropic facings  and orthotropic  cores,   over a wide range of 
cylinder sizes and material properties. 

Introduction 

The purpose of this report is to develop formulas by means of which the 
buckling stress can be calculated for a sandwich cylinder subjected to torsion. 

—This report is one of a series  (ANC-23,   Item 57-3) originally prepared and 
distributed in June  1953 by the Forest Products  Laboratory under  U.   S. 
Navy Bureau of Aeronautics  Order  No.   NAer  01336 and U.   S.   Air Force 
No.   USAF-33(038)-51-43a6-E,   Amend.   2(53-131).     This  revision was 
prepared under  U.   S.   Navy Bureau of Aeronautics No.    01778 and 01768 
and U.   5.   Air Force No.   33(616)56-9,   Amend.   A3(57-398).     Further re- 
vision may be made as additional data become available. 

2 
—Revised December 1957 by Charles B.   Norris,   Engineer. 
3 
Maintained at Madison,  Wis., in cooperation with the University of Wisconsin. 
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Methods have previously been developed to determine the buckling stress of 
homogeneous Isotropie cylinders  (l).2.and of plywood cylinders (7).     The 
analysis for plywood cylinders (7) based on an energy method,   will be used 
in the present report,   with suitable modifications to take into account the 
effect of shear deformation in the core of the sandwich shell. 

The core and facings of the cylindrical sandwich shell will be taken to be or- 
thotropic with two of their natural axes parallel to the axial and circumfer- 
ential directions,   respectively. 

The facings,   which may be of either equal or unequal thickness,   are assumed 
to be thin,   but their flexural rigidities are not neglected,   as they may be of 
importance in certain cases.     All stress components in the core are neglected 
except the transverse shear components,   and these are taker» to be constant 
across the thickness of the core.     An energy method will be employed to de- 
termine the buckling stress.     In contrast with the treatment of sandwich 
cylinders in axial compression (6) in which a large-deflection theory was used, 
the displacements will here be assumed to be such that a small-deflection 
theory is applicable.     The use of a small-deflection theory instead of a large- 
deflection theory constitutes the chief difference in the treatment of the two 
problems.     The consequence is that in applying an energy method a large part 
of the analysis for both problems is the same in its main features.     In order 
to avoid repetition of the details of exactly the same steps in the present re- 
port that are to be found in the previous report on sandwich cylinders in axial 
compression (6),   reference will frequently be made to that report.     Sufficient 
details will be presented here to show the principal steps in the analysis and 
the differences that result from using a small-deflection theory and a differ- 
ent form of the buckled surface from that chosen for cylinders in axial com- 
pression. 

Large-deflection theories  for cylindrical  shells  subjected to torsion will 
yield only slightly lower critical shear stresses than-small-deflection theories 
if the imperfections  in the cylindrical surface are small compared to the thick- 
ness of the shell (8,   12).     Cylinders of sandwich construction usually exhibit 
exceedingly small imperfections;   thus,   the small-deflection theory given here 
seems adequate. 

Choice of Axes and Notation 

The choice of axes is shown in figure  1.     The coordinate y ismeasured along 
the circumference.     The components of displacement are u,   v,   and w,   re- 
spectively,   where w is positive inward.     Love's notation (4) will be used for 
-_ __       , _ __ _ ___ 
—Underlined numbers in parentheses refer to numbered references under 

Literature Cited at end of report. 
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the components of strain e     ,   e     ,   etc. ,   and for the components of stress 

X   ,   X   ,   etc.     The thickness of the core will be denoted by c and that of each 

facing by f.,   and i?,    respectively,   as in figure 2. 

Form of the Buckled Surface 

As an energy method is to be used to determine the buckling stress,   it is 
necessary to assume a suitable form for the buckled surface.     The follow- 
ing form will be chosen: 

w 
r = g sin o^y -  Vx) sin ß* (1) 

where 

s = f (2) 

n = the number of buckles in the circumferential direction and b = the length 
of the cylinder.     The first trigonometric factor in equation (1) is suggested 
by the form that has been used to represent the buckled surface of an infinite 
plane strip (10) under uniform shear.     The factor sin /3x is introduced to make 
the deflection vanish at the ends of the cylindrical shell.     Further conditions 
at the ends are disregarded.     Except for very short cylinders,   these condi- 
tions are not important. 

It is convenient to write equation (1) of the buckled surface in the form 

w 
r 

cos (oy - 6x) - cos  {ay - «x) (3) 

where 

5 = crY+/3,    t - ay -  ß (4) 

Extensional Strain and Stress  Components 

Expressions will now be written for the extensional strains uniform across 
the thickness of the cylindrical shell and for the corresponding mean mem- 
brane stress components.     On these will be superposed a system of flexural 
strains,   and the energy of deformation associated with each system of strains 
will be found. 
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The extensional strain components are expressed by the equations: 

- Üü exx ::: 8x 

9v      w 
syy = iy " ^ 

8u      8v 
5xy - 3y '  ax 

(5) 

In each facing the corresponding stress components are: 

Ex 
Xx =  T  (exx + ayx eyy) 

Ev 
Y     = -^   (e       + or       e     ) 

y        \      *   yy xy    xx (6) 

y       nxy     xy 

where Ex and E    are  Young's moduli,   p.       is  the modulus of rigidity for shear- 

ing  strains  referred to the x and y directions,   IT-    and a       are Poisson's  ratios 
— — xy yx 

and \ = 1  -  trx     ^vx-     -All of these quantities are elastic properties of the fac- 

ings.     Because the stress  components X   ,   Y   ,   and X    are neglected in the 

core,   the mean membrane stress components for the shell are: 

Xx  = T"   (exx +  ^yx  eyy) 

— Eb 
Y     =     (e        +(r       e      ) 

y      x   v yy      xy   xx' (V) 

X    = a      e y       ^m     xy 

where 

E     =E     (1 --),    E.   = E     (I--),     a      =ii       (1  --) 
a        x v      h t»        y h m       xy h (8) 

and 

h = c + fj + f2 (9) 

By using the relation 

E.,  cr       = E,   cr a "yx b    xy 
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which can be obtained from the  relation 

E    er       = E     cr     , x    yx y    xy* 

it follows from equations  (6) that: 

.    =-Lx 
'xx      E       x 

VY    =-i   (Tv,r    xy 
y     Ea    x Ea    y 

1 —    xy —    1 —    yx — 
yy " Eb 

Yy   Ea 
Xx - Eb 

Yy  Eb 
Ax (10) 

^ = ^ xy 

The mean membrane stress components satisfy the equations of equilibrium: 

aXx      aXv      „ x +  ü = 0 
ax       ay 

(ii) 

ax      av 
y + -T-I = 0 

ax      ay 

They can consequently be  expressed in terms of a stress function as follows: 

_ a2F        — a2F 
Xx=  a   2 

9y^ 
Yy%*f   xy = 

a2F 

ax ay 
(12) 

By eliminating u and v from equation (5),   it is found that 

a2e          a2e          a2e 
xx   ,   yy       xy 

i a2w 

dy' ax2     ax ay r   ax2 
(13) 

The following differential  equation for the  stress function F is found by sub- 
stituting equations  (12) in equations  (10) and the results of those substitu- 
tions  in equation (13): 

AafF + c   94F    +Bl% = .iafw 
ax4        ax2ay2        ay4 r ax2 

(14) 
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where- 

1 1 1 2oxy 
A=Eb'      B=Ea'      C%m"    Ea 

For comparison with Report No.   1529 (7) set 6 = 0 in that report and inter- 
change A and B. 

The expression for w from equation (3) is substituted in equation (14).     A 
solution of the resulting equation is found to be 

F = aj cos (oy - 6x) + a, cos (oy - ex) (15) 

where 

g6 
1  " ZKj'      ^2 

g* 
2K, (16) 

Kj  = A64 + Ca262 + Ba4 

4 ?   2 4 
K2 = Ae     + Cat6 + Ba 

(17) 

(18) 

In accordance with equations  (12) the stress components can be found from 
the stress function F. 

Extensional Strain Energy 

The strain energy W,   associated with the membrane strains (5) is expressed 
by the integral 

W, 
^      b       2irr      _ _ _ 

= T    /      / (Xe       + Y   e       + X  e      ) dydx 2 _/    _/ v  x xx       y yy       y ^y (19) 

With the aid of equations (10),   this integral becomes 

"The definitions of A and B of reference (7) are interchanged here to agree 
with the definitions used in reference (6).     It can be shown that H of 
reference (7) is replaced here by EaEh. 
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r* 

w 
b      2 irr — 2 — 2      2o-xy  

— 2 

i = I / /    (BXx + AYy - "ET1 Vy+irL-) dydx (20) 
o      o 

By substituting the values of X  ,   Y   ,   and X    that are obtained from equations 
(12) and (15) and performing the integrations,   it is found that 

wl 2 
| B(a1

2 + a2
2) a4 + A'&^b4 + a/*4) + C(a1

252 

+ a2  c   ) a (21) 

By using equations  (16),   (17),   and (18),   the expression for W,  is reduced to 
the simpler form: 

W, 
trrbhg *_ + !_ 

Kl       K2 
(22) 

Flexural Energy of the Shell 

As in reference (6),   the following expressions will be used for the curva- 
tures and unit twist: 

a2w a2w a2w 

9x 2 ' ay2'   axay 

These expressions are exactly those used in calculating the flexural energy 
of a flat sandwich plate.     The approximate flexural energy of such a plate 
was found in references   (5) and (2) by using the tilting method of Williams, 
Leggett,   and Hopkins  (11).     In this method the transverse shear components 
are taken to be constant across the thickness of the core.     The following ex- 
pressions are chosen for the components of the displacement in the core: 

vc = 

MC 

k' (c 

q) 
aw 
äx" 

,   aw 
^¥7 (23) 

w
c  = w  (x,    y) 

The coordinates!!, and the distance q are shown in figure 2.     Thus C = 1 de" 
notes the surface in which the components of displacement in the x direction 
vanish and the parameter k describes  the inclination in the x direction to the 
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normal  of the deformed surface of the panel,   of lines that were normal to 
the undeformed surface before deformation took place.     Similarly q   and k' 
are related to the displacements in the y direction. 

In obtaining the  expression for the flexural energy of deformation,   which 
will be denoted by W2,   it is assumed that all stress  components  in the  core 
may be neglected except the transverse shear  components.      The facings are 
treated as thin plates. 

The details of the calculation of W^ and its  minimum value will be found in 
reference (6),   which in turn depends for  some of its  details on reference (2). 
The following expression is found for the minimum value of W^ with respect 
to the quantities  k,   k' ,   q,   and q  : 

_ TrbrV 
2 " 8 

A,    + 2A2    + A, 1      J 2       W      A5/. 
A,   (j> A-,  <j) 

1 +    +   + 
A,' A   ' 
.4 5 

2 (Aj'A,'   - A^2 

+ If (A/ + 2A2'  + A3
,)S (24) 

where the coefficient of the expression in brackets is different from that in 
reference (6) because the derivatives of a different function w appear in the 
integrals  to be evaluated,   and where 

htz 
4 (fi   + h) 

+ U 

(h + c)' 

cfif \LZ 
fl+f2 

H A1   .+ 2A2    + A3 

Cx (64 + e
4)+ \M.xy a2  (52 + E

2; 

(25) 

(26) 

(27) 

(28) 

(29) 
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^2) 

A3, = i   lzEy a4 + X^xy a
Z (52 + t 

2)1 

A4    =fxCx(62 + e
3) 

A5    = 2n y^ a' 

(30) 

(31) 

(32) 

(33) 

In equations  (32) and (33) u, „     and u    _  denote the transverse moduli of 
i,x y^ 

rigidity of the core.     The elastic properties of the facings are denoted by un- 
primed letters in equations  (29),   (30),   and (31). 

It follows from equations (28),   (29),   (30),   and (31) that 

«4h (64 + € 4) + 2Ey a4 + 2L ö
2 (52 + e 2) (34) 

where 

L = Ev cr       + 2\u x    yx ^xy 

Work Done by the Applied Couple 

(35) 

The work Wo  done by the applied couple in producing the deformation of the 

cylindrical surface described by equation (1) is given by the following integral: 

b      2TT-r 
W„ 

Th// 
3w aw   ,   . 
 dydx 
ax ay 

(36) 

o      o 

where T is the nnean shearing stress induced in the cylindrical shell by the 
couples applied at its ends.     The corresponding stress in the facings is given 

by: 

Ti - c 
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Substitution of w from equation (1) in equation (36) yields 

W3 = 

■?   2   2 rhbirr  g   ay 
(37) 

Critical Stress 

The critical shearing stress is determined from the equation 

w3 = Wj + w2. 

On substituting the expressions for W,,   W,,   and W, from equations  (22), 

(24),   and (37),   and solving the resulting equation for T,   it is found that 

A,    + 2A-,    + A-,    + (A/A '     A'2)(*   + v'] 
A    A       A*       4»     (A.A 

1 + _i— + —1— +     1 
A2    ) 

A^Ag' 

+ If (Aj    + 2A2   + A3') (38) 

The mean critical shearing stress is  the least value of T that satisfies equa- 
tion (38).     The justification for the  previous  calculation of the minimum of 
WT with respect to k,   k ,   q,   and q   is found in the fact that these quantities 

occur only in the expression for WT. 

It will be convenient to introduce coefficients K and K£ by the  equations 

T = KEv —        and x r 
Tf = Kf Ex F (39) 

where T^ is the shear stress in the facings at the critical load and 
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Kf = K 

i -£ 

Then 

K = 
4Exrhai*v 

4h2a2YE 

Aj   +2A2   1^3   +(A1A3    - A2    )(r-; + T^) i A^      A. 

1+   V*+   A3'4>  +4»Z(A1
,A3'  - Az'2) 

A4 A5 A/A,.' 4     5 

+ If (Aj    + 2A2
, + A3,)> (40) 

Equation (40) can be put into a convenient form by a change of parameters. 
Consider the first term and place 

ß        irr p  = ü   = 
a       no 

(41) 

and 
2 

(42) 

Then in accordance with equations  (4) 

5 = a (v + p), e   = 0 (Y . p) (43) 

Substituting the expressions given by equations  (8),   (41),   (42),   (43),   and the 
relations given after equation (14) into the first term of equation (40) and 

c 
dividing by 1  -   r-,   the following expression is obtained: 
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1      Jp 
4ir  Y 

E - —j^ 

^ (Y + P)4 + (- 

(V+P) 

^ xy 
2(rxy)(Y + P)Z + 1 

(V- P) 

E. ̂  (V - P)4 + (^ " 2<rxv)(Y - P)2 + 1 
^•xy 7 

(44) 

For the second term of equation (40) the following additional parameters are 
convenient: 

<(,£, 
S    = —i — 

x      ^ ^rh 
and S    = —r 

<t>Ex 

y    xK yCrh 
(45) 

Substitution of the expression biven by equations (43) into equations  (29),   (30), 
and (31) yield: 

Al,=ö4ExAr:      V  = ^ Ex A2":      V  =«4ExA3' (46) 

where 
2^ 

A "      Z/4,,22,4^,     rxy ,  2  .     2, 
1     = X ^Y    + 6V  P     + P   ) + "E       (Y    + P   ) 

A2"-M^ + ^)(Y2 + P2) (47) 

A    "   =   ?^      ^^(y^p^) 
EX^ EX 

Using equations (32),   (33),   (42),   (43),   and (45) the following relations are 
found: 

(t>    ,        yTX Sj 

A^      Jp2
ff

4ExA4' 

((, _ TT^X       Sy 
T ~      24 

A5        Jp   b' Ex 

(48) 

WADD TR  60-133 130 

C 



where 

A,     = Y2 + P (49) 

Using equations  (41) and (44) it is found that 

2 

hjp2«2 (50) 

Substitution of the expressions given by equations  (46),   (48),   and (50) into the 
c 

second part of equation (40) and dividing by  1   - TT  yields: 

A1 + 2A2 + A3 + (AJA3 - A/)?-± (^ + Sy) 

Jp     A4 
*?. = 2   "-i^M..A    4      L^^X-A- 

1 + 
Jp 

2 v  x 
J p 

f   (A1 + 2A^A;') 
h 

Thus equation (40) can be written 

Kf =^l^2 

(51) 

(52) 

which is  substituted in equation (39) to obtain the shear stress in the facings 
(TJ) at the critical load.     1^1   ^s a function of J,,   y^   p,   and the elastic proper- 

'                               c           I       If 
ties of the facings and ^ is a function of 7-,   J,   —,    ,   Sx,   S   ,   y,   p,   and the 

elastic properties of the facings.     The values of y and p are chosen so as to 
obtain minimum values of K,. 

If the facings are of equal thickness 

n 

iL = i-(I-£,3 

h3      48 V        h' 
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and the number of parameters is reduced by two. 

The values given by equations (53) and (54) are not greatly in error when 
the facings are not of equal thickness.     They are only ten percent too great 
when one facing is twice the thickness of the other. 

Isotropie Facings of Equal Thickness 
and Orthotropic Core 

For isotropic facings of equal thickness some simplification can be made 
because of the following relations: 

E    = E    = E x y 

"xy = "yx (55) 

^xy 
= 2 (1 + o-) 

Substituting these values in expression (44) 

^  " 4 A 
(v + p) +      (v - P)' 

[(Y + p)2 + l]2        [(y - p)2 + l]2 
(56) 

Substitution of the values given by equations (55) into equations (47) and 
taking cr to be 1/4 yields: 

2  ,   4 
j = ^ (v" + ^Y^P^ + P4) + ^ (y2 + P2) 2„2 

A2=^(V^ + p^) (57) 

A3=r + Ä(v2 + p2) 

Substitution of the values given by equations (49),   (53),   (54),   and (57) into 
equation (51) yields 

n. 
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Maximum Buckling Stress Associated 
with Very Thin Facings 

If the facings are very thin,   their individual flexural stiffnesses may be neg- 
lected.     The critical shear stt-ess will then be limited by that obtained when 
the cylinder wall buckles into a great number of very short waves.     This 
critical stress is associated with the instability of the core in shear.     Equa- 
tions  (41) and (42) show that the value of expression 

2 
2      TT  r 

n^h 

becomes very small when the number of buckles    n   becomes very large and, 
therefore,   the value of ijj,   may be neglected.     Also only the expressions in 

the first term of i);? that have the expression Jp    in their denominators need 

be considered.     Further,   because the facings are very thin the expression 
c 2 (1  - —)    in the second term of ^    is substantially zero,   so this term may be 

 h_ _£   c,2 
neglected and the expression (1  + jr)    in the first term of ij;- becomes 4.     Equa- 

tion (59) may then be written 

= _Eh_ 1 + e (y2 + P
z) (60) 

f      8\rSx By 

Minimum values of T, occur when p  = 0 and v =  .    Substituting these 

values and the expression for 6 in (60): 

Eh 
f      4\rJS  S »    x   \ 

(61) 

Substitution of the expressions for S    and S    given by equation (45) and re- _x _2_ 
membering that E     = E and that c is substantially equal to h 

Tf = 2r/^x%c (62) 

This is the maximum critical shear stress that can be obtained if the individ- 
ual stiffnesses  of the facings are neglected. 
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Very Long Cylinders 

When the cylinder is very long,   it is convenient to eliminate the parameter 
J by means of the relation: 

i£i = _e_ (63) 
IT
2

        n2h 

obtained from equations (41) and (42).     As the cylinder is lengthened,   the 
number of buckles    n   becomes two (10) and thus according to equation (41) 
the value of p approaches zero.     Thus equation (44) becomes: 

V^ s* 4  A/—77" (64) 

Equations  (47) and (49) for substitution in equation (51) become: 

"      Z     4+^xI    2 
Al  =XY    +     E     V 

A       -. /"^y , ^xy\   2 

^       Ex 

" E u 
A3 = 2Efx+2   zf V 

(65) 

A4 = Y 

Minimum values of Kf from equation (52),   using these new expressions for 

\\i    and I]J   ,    are found by choosing suitable values of y. 

If the facings are isotropic,   equation (44) becomes: 

*i =k -T-—z (66) 
1
    8h   (Y

2
 + 1)2 

and equation (51) becomes: 
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2h 

Ml-f)r 
(i ± v2)2 

3n2hS„ , 
1+ — ^(i+ev2) 

8r 

3n4h2E 
n^Sxr 3 ,-1    3n4h^e/ , 

(67) 

If the core is also Isotropie,   equation (66) is not changed but equation (67) 
becomes: 

h3 .  % 
V2 " 

2h (I j; y2)2 

Ml  - £)r 1 + UM (1 + 7)      h3 
(68) 

Values of ^ are chosen that make K, = i|).  + i\i? a. minimum. 

The shear force per unit length of the edge of the sandwich cylinder is given 
by: 

.2 2 
N = rh = T   (1  - J)h = (1  - J)KfE 7- = (1 - ^W,  + 4'2)E T" 

i n nir n-i^r 
(69) 

The expression for N obtained by substituting the expressions for \\i,   and \\i? 

given by equations (66) and (68),   omitting the last term in the brackets in 
equation (68),   can be shown to be in agreement with the expression obtained 
by Gerard (3) by another method.     The omitted term is associated with the 
flexural rigidities of the facings and may add considerably to the critical load 
if the core has a small modulus  of rigidity and the facings are thick. 

Numerical Results 

Numerical values of the buckling coefficient K, for cylinders having Isotropie 

facings of equal thickness were obtained by use of equation (59) and equations 
(56) and (58) and are plotted in figures  3 to 8.     These curves are reasonably 
accurate for sandwich constructions having unequal facings   if the thickness 
of one facing is not more than twice that of the other.    Values are plotted for 
J ranging from 10 to 10,000,   Sx from 0 to 2,   for 6^ equal to 0.4,   1.0,   and 2.5 
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c 
and — equal to  1 and 0.7.     The particular values of 9 were chosen to agree 

with the properties of honeycomb cores of hexagonal cells and Isotropie 
cores.     Estimates of K^ for other values of 9^ can be obtained by interpola- 

tion.     Values of Kf for     r- equal to 1 apply to sandwich panels having facings 

so thin that their bending stiffnesses may be neglected.     An estimate of the 
effect of facing thickness is given by the values of Kf for — equal to 0.7. 

 L h 

In calculating the mininnum values of ^he buckling coefficient (K,),   it was 

assunned that the values of p were continuous.     Strictly speaking,   the values 
of p are discrete because they contain an integral number of buckles    n   in 
the circumference of the cylinder as shown by equation (41).     These discrete 
values depend upon the ratio of the radius of the cylinder to its length. 

The results of the calculation showed that the values of the buckling coefficient 
(Kf) were not sensitive to the values of p;   thus,   the error introduced by the 
assumption that p is continuous is  small. 

As the cylinder becomes longer the number of buckles becomes less and is 
equal to two for an infinite length (10).     Thus,   for large values of J the num- 
ber of buckles approaches two.     The results of the calculations showed that 
for J equal to  10,000,   values of p are about 0.1 for substantially all of the 
calculations made (p was less than 0.1 for 6 equal to 2.5 when Sx  was large). 
Substitution of these values in equation (63) shows that for two waves the 
ratio of the radius of the cylinder to its  thickness  is  about 40 and the assump- 
tion of a greater number of waves leads to a larger value.     Thus,   for large 
values of J these curves apply only to cylinders with a ratio of radius to thick- 
ness  in the neighborhood of 40 or larger.     If this  ratio is less than 40,   the 
curves  give conservative values of the buckling coefficient. 

Numerical values of Kf for infinitely long isotropic cylinders having equal 
facings  were calculated from the sum of equations   (66) and (68) using  equa- 
tions  (53) and (54) and are plotted in figure 9 against S for different values of 
r c 
—.     The solid lines apply to a — value of unity.      The uppermost solid line that 

cuts across the others indicates shear instability of the core and is obtained 
from equation (62).     The dotted lines apply to a £• value of 0.7. 

h ; 
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Conclusions 

6 
The shear stress in the facings at which buckling-of a cylinder of sandwich 
construction in torsion will occur is given by: 

Tf = Kf Ef 7 

For orthotropic facings and cores,   K, is given by equation (52) in connection 

with equations (44) and (51).     For isotropic facings and orthotropic cores, 
equations  (56) and (58) are used in place of (44) and (51).     Numerical values 
have been calculated and are plotted in figures  3 to 8.     Maximum values for 
the critical shear stress- for cylinders having orthotropic cores and very1 

thin isotropic facings are given by equation (62),   and are plotted as the upper 
solid curve in figure 9. 

Values of K, for very long sandwich cylinders having orthotropic facings and 
cores is given by equation (52),   using equation (64) and equations (65) in equa- 
tion (51) for values of ijj,   and ^J-,.     Values for very long cylinders having iso- 
tropic facings and orthotropic cores are given by the sum of equations (66) 
and (67).     Values for isotropic cylinders are given by the sum of equations 
(66) and (68).     Numerical values of this sum are plotted in figure 9.     These 
values are limited by equation (62) as shown in the figure. 

—The possibility of wrinkling at a lower stress  (similar to that described in 
Forest Products Laboratory Report No.    1810),   (9) should be investigated. 
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Notation 

al'   a2 

A 

i'        2'        %'       4'       5 
ti ii ii 11 

A,f   "2*       V       4 

b 

B 

e     ,   e     ,   etc. xx       xy 

E   ,   E   ,   E x'      y' 

fl'   f2 

g 

h 

H 

I 

1, 
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defined by equation (16). 

_L 
Eb' 
defined by equations (29) to (33). 

defined by equations (47) and (49). 

length of cylinder. 

J_ 
Ea- 
thickness of core. 

Zcr 
1 xy 

■^m a 

components of strain. 

Young's moduli of the facings. 

E* " • h>- 

Ey (' " P- 

thickness of the facings. 

coefficient in equation (1). 

c + fj + f2. 

defined by equations (28) and (34). 

defined by equation (25). 

defined by equation (26). 

bf 
rh- 
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k,   k 

K.   Kf 

Kl'   K2 

1; 

n 

q. q 

sx, Sy 

w, 

w. 

w. 

Xx,   Xyl   etc. 

Y 

6 
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parameters introduced by equations (23). 

buckling coefficients (see equations (39). 

defined by equations (17) and (18). 

E  a-      + 2\|j.     . x  yx "xy 

number of buckles in the circumferential direction. 

parameters introduced in equations (23). 

radius of middle surface of the cylindrical shell. 

defined by equations  (45). 

axial component of displacement. 

circumferential component of displacement. 

radial component of displacement. 

extensional strain energy. 

flexural strain energy. 

work done by applied couple. 

components of stress. 

n 
r" 
n 
b" 

defined by equation (27). 

inclination of buckles, 

defined by equation (4). 

defined by equation (4). 

coordinate shown in figure 2. 
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xy       yx 

1  - tr     a" xy   yx 

modulus of rigidity of facings, 

moduli of rigidity of core. 

Poisson's ratios of the facings. 

& = IL 
a     nb 

mean shear stress. 

shear stress in facings. 

'■ 
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Figure 1.--Choice of coordinates on the surface 
of a cylinder. 
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Figure 2. --Section of a cylindrical shell,   where r^ is the radius of the middle 
surface of the shell,   c_ is the thickness of the core,   fi   and £3 
are the thicknesses of the facings,   q is the distance indicated 
in the figure,   and £   is the coordinate indicated in the figure. 

Note:     The curved lines are arcs of concentric circles. 
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SECTION V 

ANALYSIS OF LONG CYLINDERS OF SANDWICH CONSTRUCTION 

UNDER UNIFORM EXTERNAL LATERAL PRESSURE- 

By 

MILTON E. RAVILLE, Engineer 

2 
Products Laboratory,— Forest 

U. S. Department of Agriculture 

2 
Forest Products Laboratory,— Forest Service 

Summary 

A theoretical solution is obtained for the stresses in long sandwich 
cylinders subjected to externally applied uniform lateral pressure. 
The analysis is extended to take into account failure due to elastic 
instability, and an equation is derived for the determination of criti- 
cal loads on long sandwich cylinders.  The application of this analysis 
to long curved panels (portions of a long cylinder) is discussed.  The 
sandwich construction is assumed to consist of Isotropie membrane fac- 
ings and an orthotropic core. 

Introduction 

In this report it Is assumed that the sandwich cylinder is comprised of 
thin, Isotropie facings of a relatively stiff material separated by an 
orthotropic core of a relatively weak material. The facings are assumed 
to be so thin that bending and shear in the individual facings may be 
neglected.  It is further assumed that the only stress components present 
In the core are the normal stress on surfaces parallel to the facings and 
the transverse shear stress.  Since elasticity theory is used in regard 
to the core, the solution is not limited with respect to core thickness. 
Results based on the assumption of membrane facings are somewhat limited 
_^ _^ _^  

—This report is one of a series prepared by the Forest Products 
Laboratory under U. S. Navy, Bureau of Aeronautics Order No. 01595- 

2 
—Maintained at Madison, Wis., in cooperation with the University of 

Wisconsin. 
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in applicability, but they should be sufficiently accurate for the 
majority of sandwich panels.  It is felt that the core assumptions 
represent reasonably well the cores presently in use, especially those 
of the honeycomb type. 

The method of analysis is based primarily on the fact that the core assump- 
tions permit the direct determination of the core displacement functions 
insofar as their dependence on the radial distance is concerned. The usual 
requirement of continuity of displacements at the interfaces is specified. 
The stability analysis is based on the method used by Timoshenko^ in the 
analysis of the stability of homogeneous Isotropie cylinders.  The stresses 
in the sandwich cylinder are determined for loads less than the critical 
load; and, in discussing buckling, only small deformations from this uni- 
formly compressed form of equilibrium are considered. 

Notation 

r, 9, z 

a 

b 

t 

E 

E 
c 

Gre 

q 

p 

a 

5,0,5 
r'  r'  re 

re; re 

radial, tangential, and longitudinal coordinates, respectively 

radius to middle surface of outer facing 

radius to middle surface of inner facing 

thickness of facings 

modulus of elasticity of facings 

Poisson's ratio of facings 

modulus of elasticity of core in direction normal to facings 

modulus of rigidity of core in r-0 plane 

intensity of uniform external lateral loading 

intensity of uniform external lateral pressure, equal to -q 

normal stress in the radial direction in outer facing, inner 
facing, and core respectively 

small normal stresses in the radial direction in outer facing, 
inner facing, and core respectively 

small shear stress in the plane of the middle surface of the 
outer and inner facing, respectively 

I. Timoshenko.  Theory of Elastic Stability, p. kk6. 
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small transverse shear stress In the core 

direct stress resultants In the tangential direction in the 
plane of outer and inner facing, respectively 

small direct stress resultants in the tangential direction 
in the plane of outer and inner facing, respectively 

radial displacements of outer facing, inner facing, and 
core, respectively 

small radial displacements of outer facing, inner facing, 
and core, respectively 

small tangential displacements of outer facing, inner facing, 
and core, respectively 

i 

eQ, €a       tangential strains in outer and inner facing, respectively 
-  *'  - 
€_, ca)   ea small tangential strains in outer facing, inner facing, and 
y  y  yc . . n core, respectively 

n number of waves in circumference of cylinder 

a one-half the central angle of curved panel 

r0c 

V % 

\> % 

u,   u , ^ 

u,   u  , 
"uc 

v,   v   , v 
c 

(1 + b/a) - ^ log b/a 
E a 
c 

log natural logarithm 

A, BJA,B,C,H,A,B,C,H      arbitrary constants 
nnnnnnnn 

Theoretical Analysis 

The first step in the analysis is that of determining the stresses in the 
sandwich cylinder for pressures up to the critical pressure.  The cylinder 
remains circular and is in a state of uniform compression.  Throughout the 
analysis, q represents a uniform, lateral load acting in the positive radial 
direction.  The pressure, p, is equal to -q. 
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Equilibrium of Core 

As previously stated, it is assumed that the core can transmit only normal 
stresses in the radial direction and transverse shear stresses. When the 
cylinder is in a state of uniform compression, the only stress present In 
the core is the normal stress in the radial direction, a 

re 
Considering 

the equilibrium of the differential element of the core shown In figure 1, the 
summation of forces in the radial direction results in the following equation: 

da 
!C dr)(r + dr) d0 dz = 0 aTC  r do dz + (arc + dr 

This reduces to the following differential equation of equilibrium: 

dCTrc  arc -~ +  — = 0 
dr    r (1) 

The solution of equation (l) is 

a      = E - 
re   c r 

(2) 

In which ECA represents the constant of integration.  The radial displacement 

of the core, u , is related to the radial stress, O     ,   by the following equa- 
tion: duc 

re   c ar (3) 

From equation (2) it follows that 

duc  A 

dr  r 

Integration gives 

u = A log r/a + B 
c      & ' CO 

The use of log r/a instead of log r merely alters the arbitrary constant of 
integration. 

Equilibrium of Facings 

With reference to the differential elements of the facings shown in figure 2, 
It is seen that, when the cylinder is uniformly stressed by the action of the 
external load, q, the only stresses present in the facing^ are the radial 
stresses, a     and a   ,  which are exerted by the core, and the tensile forces 

' r    r' , 
per unit length of facing. Ng and N_. These stresses are assumed to be 

acting on the middle surfaces of the facings; an assumption which is justi- 
fied since the facings are assumed to be thin.  An equilibrium equation 
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can be obtained for each facing by summing forces In the radial direction 
on each element. The equilibrium equation which pertains to the outer 
facing is 

qa d0 dz - a a d0 dz - N- d9 dz = 0 

This reduces to 

Na = qa - a a 

or. since a - (a ) 
'       r    re' 

\\a   = qa - a(a  ) Q      ^      re (5) 

In a similar manner, the equilibrium equation of the inner facing is ob- 
tained as . 

N = b(c  ) 
9     re (6) 

r = b 

■ 

The requirement is now made that the displacements of the core and facings 
be equal at tte ■respective interfaces.  It is assumed that the core extends 
to the middle surfaces of the facings.  Thus 

u = (uc) (7) 

and 

u' = (uc) 
^ r = b 

From Hooke's law, 

Na = EtCeJ 

(8) 

(u0). c'r = a Since EQ = — , and, in view of equation (7), ^n =  ~ —— >   then 

Ne = Eti (uc) 
a    r = a 

By using equation (U) in conjunction with the above equation 
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Et(B) (9) 

Also, from Hooke'8 law, 

N' = Et(6') 

Since Eg = r > the above equation in conjunction with equations (8) and 

(k)  leads to: 

Ng = Et(£ log b/a + |) (10) 

Since, from equation (2), (a ) re i 

(5) and (6) may be written as 

N0 = qa - EcA 

and 

N, 
0 

E A 
c 

E^ and (o^) ca     rc r = b 
E —, equations 

(11) 

(12) 

After equating the right-hand sides of equations (9) and (ll) and the 
right-hand sides of equations (lO) and (12), two equations are obtained 
from which the values of the constants A and B may be determined.  These 
two equations are 

qa - E A = —B ^    c   a (15) 

and 

ECA = |p (A log b/a + B) 

From equation (l^) 

B 
Et 

- log b/a 

(iM 

(15) 

Substituting the above value of B into equation (13)  and multiplying 
a through by 

Et' 
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qa2  Eca 

Et" ' Et" 

Ecb 
¥r  - log b/a 

from which 

aaf 
Et 

Eca 
—(l + b/a) - log b/e 

qa 1 

(1 + b/a) - 
Et log 

Eca 

b/a (16) 

Substitution of the above value of A into equation (15) gives 

.        Et log b/a 

B = ^ 
Et 

Ecb 

/     7~\       Et log b/a (1 + b/a) -   E I 
/ 

c 

(17) 

When the value of A given by equation (l6) is substituted into equations 
(2), (ll), and (l2), respectively, the following expressions for the 
stresses In the cylinder are obtained: 

re ä£(k) (18) 

where k = 

Ne = qa (1 - k) 

N' = qak 
0 

1 

(19) 

(20) 

(1 + b/a) Et log b/a 
Eca 

Also, by using the values of A and B given by equations (l6) and (17), 
equation (k)   for the core displacement, after some simplification, becomes 

qa 
Uc =Et 

"Ft 
(1 - k) + g-^k log r/a 

"c 
(21) 
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Since u, the radial displacement of the outer facing, equals (u_)     and c/r = a 
u , the radial displacement of the inner facing, equals (u_)    , 

^ r = b 

^2(1 - k) (22) Et 

and 
2 1   qa 

= E ^  b/a) (23) 

The analysis thus far is not limited strictly to membrane facings.  The 
only restrictions on facing thicknesses are those Imposed by the usual 
thin-walled-cylinder theory plus the additional requirement that the radial 
displacement of the middle surface of the facings be equal to the radial 
displacement of the corresponding interfaces. 

The next step in the theoretical analysis concerns the development of the 
stability criteria.  In this analysis, which follows, the facings are 
assumed to be membrane-type cylindrical shells.  As mentioned previously, 
it is assumed that the stress situation in the deformed cylinder differs 
only slightly from the stress situation which exists just before buckling. 
A bar is placed over the appropriate symbol to denote the small stresses, 
strains, and displacements which occur when the cylinder goes from the 
initially uniformly stressed circular form to the slightly deformed con- 
figuration.  These quantities are dependent upon 9  as well as r. 

Equilibrium of the Core 

Since the cylinder is now considered to be In a slightly deformed state, 
the core is also slightly deformed.  Figure 5 shows that, in addition to 

the radial stress, q^k, which exists just before buckling, an additional 

small radial stress, 5  , and a small transverse shear stress, T a > must 

be considered.  These stresses result when the core takes on small deforma- 
tions from the initially uniformly compressed, circular shape, and they 
are dependent upon 0 as well as r.  The differential element shown in 
figure 3 is considered to be in equilibrium under the stresses shown.  Sum- 
mation of forces in the radial direction yields the following equilibrium 
equation: 

d('Ä)    öd 
-   (A + CTrc) r dS dz + (A + Src +  —-^—dr + -g^dr)(r + dr) de dz 

-f.drdz+(Ta  + övjecd0) dr dz = 0 
rec        r0c   o0 
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If terms containing the products of more than three differentials are neg- 
lected, the above equation reduces to 

äff of „ 
ff-.dr d9 dz + —E£r dr do dz + —lZ£drä.e  dz = 0 

or,   dividing through by r dr d9 dz, 

^Tr9c dä„„      ä„„      1 äi rc   rc 
ör    r   r öS 

0 (2k) 

Summation of forces in the tangential direction yields the following equa- 
tion of equilibrium: 

T . r d9 dz + (T 
roc 

br 
roc 

r0c 
Or 

dr)(r + dr) d0 dz + T . dr d9 dz r9c 

which reduces to 

aTr0c . 2Tr9c 
(25) 

The core displacements are related to the core stresses by the following 
equations: 

äü_ 
a  = E -^-■ 
rc   c dr (26) 

and 

Tr0c ~ Gr9 

i auc     bvc     Vc 
r 59"  37" ' r (27) 

where 0C and Vc  are the small radial and tangential core displacements 
from the uniformly compressed form of equilibrium. Equations (214- - 2?) 
are sufficient to enable the direct determination of the displacement 
functions ü  and 7  insofar as their dependence on r is concerned.  Thus, 

c     c ' 
it is assumed that 0 and ■? are expressible in the following form: 

f, (r) cos n9 

v  = f„(r) sin n0 
c    2K   ' 

(28) 

(29) 
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This assumes that during buckling the circumference of the cylinder is 
subdivided into n waves; and the lowest value of the critical press'ure 
will be obtained for n = 2, as in the case of homogeneous Isotropie 
cylinders.  The functions, f,(r) and f (r), are now determined. 

From equations (26),   (27),   (28), and (29) it is seen that 5  and f 
re     r9c 

may be expressed as follows: 

5  = fJr)  cos r.e (30) re   5 w / 

T   = f (r) sin ne (jl) 
rflc   k 

The use of the expression for f   given by equation (5l) in equation (25) 
roe 

results in the following equation: 

d f (r)   2 f, (r) 
—-i  +   = 0 

dr        r 

The solution of the above equation is 

A 
/ ■,    n        1 

U   = —2' where \i  is an arbitrary constant, 
r 

Substitution of the above expression into equation (5l) yields 

A 

^0c = -2 Sin ne (52) 

r 

When the expressions for 5       and f .  given by equations (50) and (52) 

are substituted in equation (2^), the result is 

d f (r)   f (r)     A^ 
   + —  = - n—^ 

dr       r       r^ 

The solution of the above equation is 

nA'  B' 

f3(r)=^+^ 
r    r 
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and,   from equation  (30), 

riAn      Bn 
Jrc    =    (-g-   +    )    COS    ne 

r r 
(53) 

Referring to equation (26), the following equation may be written: 

äü   1  nA*  B' 

 = — V—Ö- + —)   cos n0 
dr   E  r    r 

c 

büc      d f^Cr) 
Since, from equation (28), ^p- = —-r--  cos no. 

d f (r)   1  nA^  B^ 

dr 

Integrating 

-(-^ + ^) 
Er r c 

f.Cr)  = g- ( 
nA 
—2 + B'   log r + C') 
r n      ^ n' 

Therefore 

1 nA -- 
üc  = — (   - ~ + B^ log r + Cj!,)  cos no (5^) 

Rewriting equation   (2?), 

äv         v         T 1 du 
c      _c  _     rQc  c 

dr    '  r    ~ G „    ' r b9 re 

Sub stltuting for T^g    anl ü    their values giveji by equations  (52)  and (3h), 

c c 1    A 

G *  r 

re 

1 

E 
-^ sin ne + —  ( (- 

r2 

n^A        nB    log r      C 
— + --ti)  sin n0 
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Using equation (29) for v , 

d f (r)  f (r) 
2      2 

dr      r 

n2 A'  nß' log r  1 C 
/     1 _n   n 

G    E  r2   E   r 
rS   c       c 

E r 
c 

The solution of the above equation is 

fo(r) = H> - ( 2G re 

n   An  ^n Cn 
2E-) — - r- (1 + log r)- r 

c      c c 

Therefore 

v = 
c 

n2  A 

^20  " 2E ' r rS    c 

nB C 
\ n n  /-,     -,       N      n     TT' ) 7- - v— C1 + log r) - s- + H 3 sin ne  (35) 

The functional dependence on r of the displacements ü^ and v as expressed 

in equations (31+) and (35) having been determined, It is convenient at this 
1   t   t       * 

point to redefine the constants A , B , C , and H . Equation (5*+) may be 

written as follows: 

üc = (Ana + Bn ^- + ■Cna log r/a) cos no (56) 

Then equation   (55)   must be  replaced by 

1    E, 
nA a +  (-- -— - r)  B nC  a  (l + log r/a)  + H r n v2n G02nr nv o    /    / n r0 

sin n9 

(57) 

The displacement equations are thus expressed in terms of the simpler non- 

dimensional arbitrary constants A , B , C , and H .  Equations (52) and 
n'  n'  n      n 

(53) for the core stresses are expressed in terms of the new constants as 
follows: 

E   a^ 
Fr0c = - — Bn— sin n9 (58) 

and 
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q (l + e ) a de dz - (qk + 5 )(l + i ) a d9 dz 

qa (1 - k) + Ng (! + 1 öv . 1 ^) d9 dz 
a 00  a ä£r 

If terms containing products of small quantities, i.e.,. products of barred 
quantities, are neglected and the above equation is divided by d9 dz, the 
result may be written as 

i \- i wl ä^f  1 ä ü. 
N = . a a + qa (1 - k)e - qa (1 - k)( ö) 
0     r 6 a äö  a 2)9^ 

Since  e_  = — + — ^—,   the above equation further reduces  to 

*    = -   a a + qa (l  - k)(- + 5) 
6 r a       a äe 

(^0) 

The second equilibrium equation of the outer facing is obtained by summing 
forces in the direction tangent to the element.  Thus, 

-v- d9 dz - T e(l + gg) a d0 dz = 0 

Again by neglecting the term containing the product of the barred quantities 
and dividing through by d9 dz, the above equation is reduced to 

59" 
rr0£ (^1) 

The two equilibrium equations which apply to the inner facing are obtained 
in a manner exactly analogous to that used in obtaining equations (MD) and 
(Itl). These equations are: 

Nl ^'b + qak (S'+i^Sl) 
0   r       b  b a02 

(U2) 

m e 
W freb (^3) 

In addition to the four equilibrium equations (l(-0 - ^5), the following two 
equations, based on Hooke's law and the strain-displacement relations, may 
be written: 
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=E  (-B^ö+cf) cos no (59) 

The validity of the above equations is easily verified by the substitution 
of equations (38) and (39) into the equilibrium equations, equations (2^) 
and (25), and further by the substitution of the expressions given by equa- 
tions (36 - 39) into the stress-displacement relations, equations (26) and 
(27).  It is of interest to note that the manner in which the core stresses 
and displacements vary with respect to r is not so simple as is sometimes 
assumed in problems of this nature. 

Equilibrium of Facings 

illustrated in figure 2.  Since a = (a  ) \ re and cr = (a  ) the 
r = b r = a 

stresses shown in figure 2 can be determined from equations (l8), (19), and 
(20).  As stated previously, the stress situation in the facings when the 
cylinder is in a slightly deformed state is assumed to differ only slightly 
from the situation which existed Just before buckling.  In figure k,  which 
illustrates the differential elements of the deformed facings, the symbols 
-   «'      _' _' 
N„, N„, T _. T „, a , and a  are used to indicate this small stress varia- 9'     9'     r9'     r9'     r' r 
tion which has taken place.  The assumption of membrane facings eliminates 
the necessity of considering bending and transverse shear in the individual 
facings.  In formulating the applicable equilibrium equations of the fac- 
ings, account must be taken of the rotation and stretching of the facing 
elements during buckling.  This effect was found to be negligible in regard 
to the core.  Due to the difference in rotation between the longitudinal 
elements M and N of the outer facing and the difference in rotation be- 
tween the longitudinal elements M and N of the inner facing, the initial 

/,   1 a?  1 ö^üs ,.   , /-,   1 äv (1 + ^) d0 and (1 +  
a 00  a öS b be 

1 bc 

-) de central angle, d0, becomes 
b öe~ 

k 
for the outer and inner facings, respectively As a result of the tan- 
gential strain in the outer and inner facings, the|areas of their differ- 
ential elements become (l + eg) ado dz and (l + Eg) b d0 dz, respectively. 

ü, v, ü , v , e., and e  represent small displacements and strains which 
9 B 

result when the cylinder goes from the undeformed to the deformed state. 

With reference to figure k  it is seen that two equilibrium equations can 
be written for each facing.  Considering the outer facing first, the sum- 
mation of forces in the direction normal to the differential element of 
the outer facing yields 

"S. Timoshenko.  Theory of Elastic Stability, p. 1+31. 

WADD TR 6O-I33 166 
■ •*-.■ 

V. 



Et  ,-   s Et   /ü , 1 dvv 
vee/ = 5 v- + ; ^e = 2 veö' -   2 

l-M.       1-l-i  a  ao9 

Ne = 2 (eg) = g (- + ) (U5) 
1 - H""  "   1 - n • b   b äe 

The following relations enable the rlghl-hand sides of equations (k-O - k^>) 
to  be expressed in terms of the constants A , B , C , and H which appear 

* n'     n'     n' n r* 
in the equations for tha core displacements, equations (56) and (57): 

^r = («re) and <   =   (3rvJ 
r = a r = b 

or,   on the basis  of equation  (59), 

E     (- B    + C  )  cos  n0    and    5    = E     (- B    ^0 + C    r)   cos  n0 r en n r c n b^ n 

{kG) 

f      = (f      ) 
r0 r9c 

and 
r = a 

f       = (f       ) 
rQ r9c 

r = b 

or,   on the basis  of equation (58), 

E„ 

r9 

Ü =  (üc) 

B    sin n0 
n and 

rS 

E P 
— B    ^ sin n9 {kl) 
n       n b 

and ü    =  (ü ) 
r = b r = a 

or,   on the basis   of equation  (56), 

Ü =   (Ana + Bna)   cos   n0       and      ü'   =  (Ana + Bna | + Cna log b/a)   cos  n0 

ih'6) 

v =   (v  ) and v    =   (v  ) 
r = a 

or, on the basis of equation (57), 

v = 

r = b 

.1  Ec  n 
" n Ana + ^ r 0) B a - n C a + H a n    ^n G g  2  n      n    n sin nO 
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and 
1 Ec   n „ 

n A a + (^- — ^) B a 3 - n C a (l + log b/a) + H b n   v2n G _  2'  n b      n  v     o / /   n r9 
sin n0 

The relationships given by equations {h6 -  1+9) express the assumed con- 
tinuity conditions on the stresses and displacements at the interfaces. 
The further assumption that the core extends to the middle surfaces of the 
facings is implied. 

On the basis of the above-listed continuity conditions, equations (1+0 - U5) 
can be transformed, respectively, to equations (50 - 55)> shown below. 

N„ = E  a (B  - C ) - (n  - 1) qa (l - k)(A + B ) en   n / 1  v     'v n   n 

be 
Ec  a 

"       n Bn Sln ne 

N0 = - E     a   (B    § "  C  ) c           n b         n' 

cos no  (50) 

(51) 

-   (n2   -  1)   qak f  (An + B
n ^ + c

n log b/a)     cos  no 

äNe       Ec  b 

59 

N 

B     — sin  n9 
n b 

Et 
8       . 2 

1   -  |i 
(n

2   .DA    +   (J^ 
11 2Gfl       2 r0 

Et        \      ,  2 , a       , E„ 
N    =  ~ \ -  (n    - 1) A    - +'(—ß 

0       1   -  (i2    L n b 2G 

2 2 
-    +l)B     -n    C     +nH 

2 2 rr- . a 
— +  1)  B    -^ 

r9 

n2 +  (n2  -  1)   log b/a C    a/b + n H    > nJ 

n ^,2 

cos n0 

The   integration  of equations   (51)  and  (55)  yields 

(52) 

(53) 

cos   no 

(5U) 

(55) 

Ec  a 
Na = -^-— B    cos  ni 

0 n2       n 
(56) 

and 

E    b a 
  B,., — cos  n0 

2       n ^2 
n b 

(57) 
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The integration constants are zero, since N- and N are dependent entirely 

on 6,  as shown by equations (50) and (52). 

Four independent equations containing the constant A^,  Bn, C , and Hn, as 

well as the load q, can be obtained from equations (50), (52), (5h),   (55), 
(56), and (57).  If the right-hand sides of equations (50) and (56) are 
equated, the result is 

o En a 
E  a (B  - C ) - (n^ - 1) qa (1 - k)(A + B ) = -^r- B 
c    n   n' 'x n   n'    2  n 

The above equation may be written as  follows: 

-   (n2  - l)(q/E   )(1  - k)  A^ 

(n2  -  l)(q/E   )(1   -  k)   -   ( 
n     -  1, 

B     -  C     = 0 
n n 

(58) 

If the right-hand sides of equations (51+) and (56) are equated, the result 
is 

Et 

1 - n 
(n2 - 1) An + (-^ 

n     v      2 
— +l)B  -nC +nH 

2Gre  2 

E  a 
c 
2  n 

which reduces  to 

(n^  - 1)  An + 
2G 

r0 
-2-+1 

E.  a  (1  - n2) 

2 
n    Et 

-n    C    +nH    =0 
n n (59) 

If the right-hand side of equations (52) and (57) are equated, the result 
Is 

- E    a (B    |: - C   )   -  (n2  -  1)  qak MA    + B    ^ + C    log b/a) c nb        n'       v '   ^      b      n        nb nB// 

Ec  a 

2      n B^ - 

which reduces  to 
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(n2 - l)(q/EJk A^ + (n2 . D (q/E )k | + ( n
2 -1^ 

(n2 - l)(q/Ec)k log b/a - | C = 0 n (60) 

Finally, if the right-hand sides of equations (55) and (57) are equated, 
the result is 

r^{-'"£ 1) An - + ( 
n b   20 rS 

— + 1) B -^ 
2       n b^ 

[n2 + (n
2 - 1) log b/a] Cn f + n E\= - -^ \ - 

L J J    n     b 

which reduces to 

/ 2    v a 

- (n^ - 1) - An + 
b 2G 

r0 

^2 + .^ a + Ec * (l - H ) 
2      b n2 Et 

a 
- B^ 

- Fn2 + (n2 - 1) log b/al ^ C + n H =0 (61) 

Since ^  appears only in equations (59) and (6l), it is eliminated immedi- 

ately by subtracting equation (59) from equation (6l). The result 1B 

(n^ - 1)(- - 1) A + 
b      n 

(- 

2 n — 

20 r0 

a." E  a (1 - n^) 
+ 1)(- - 1) +-£  

b n Et 

(f + 1) n2 (| - 1) + (n2 - 1) § log b/aj Cn = (62) 

Equations (58)^ (60), and (62) comprise a system of three equations con- 
taining the constants A.B. and C which occur in the expressions for 

n  n'     n 
the displacement functions ü and v .  A buckled form of equilibrium is 

possible only if equations (58) ,> (60), and (62) yield non-zero solutions 
for these constants; this requires that the determinant of the coefficients 
of A , 3 , and C be equal to zero.  The equation used for the determina- nt  n'     n    ^ ^■ 
tion of the critical load is obtained from this determinant.  Specifically, 
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(n2 - 1) q/Ec (1 - k) 

(n2 - 1) (q/E )k 

(n2 - l)(f - 1) 

(n^ - 1) q/Ec (1 - k)     1 

n2-! 

(n2 - l)(q/Ec)kf 

n 
Ec   n2    a2       0 _ 

E„ a (1 - ^2) a 

(n2-- 1) (q/E )k log b/a 

b 
a 

n2 Et 
(- + 1)   + (n" - 1) 2 log b/a 
b D 

= 0 

The following quadratic equation is obtained from the expansion of this 
determinant: 

(q2/Ec
2) k (1 - k) 4 n2 

(1 - b/a)' 

(b/a)2 

E   ' n2 1 - b2/a2 

+ ^ a (1 - ^i2) (1 + b/a) 

b/a 
P 

n Et 

2Gr9  2    b7a^ 

log b/a  + q/E J (1 - H^ 
1     C| (b/a)2 

b/a 

/    / \ 1  n - 1 r     /    ,>'! log b/s 
- k (1 + b/a) +  —    1 - k (1 - b/a)   f7 / 

-I    n^   L -l  b/a 

n2-l 
  fb/a + k (l - b/a)1 

2     ! ._ v.2/„2 
— + 1)( 

Ec   n^  ,v/l - b2/ 

E  a (l - n2)  1 + b/ 

n2 Et 
( ~) 

b/a 

_2Gre  2 

1  (1 - b/a)2 

~2      77 n     b/a 

b2/a2 

= 0 (63) 

Analysis of Results 

The results of this report are contained in equations (l8), (19), and (20); 
the equations for determining the stresses in a long sandwich cylinder under 
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uniform external loading;  and In equation (63),  the equation for deter- 
mining the critical load on a long sandwich cylinder.     These equations 
are repeated below: 

re 
a 

I 7 k 

N0 = qa   (1  - k) 

qak 

(q7E 2)k   (1   - k)- 

(18) 

(19) 

(20) 

(1   - b/a)2 

(b/a)2 

Er        n2    1  - b2/a2 

2G 2 b/a 
.      r9 

Ec  a  (1  - ^   )     1 + b/a 

n2 Et b/e 
log b/a y + q/E 

(1  - b/aT 

(b/a)2 [bA 

k  (1 + b/a)]   + ^ [l   - k  (1  - b/a)]   i2&±ä 
J n L J b/a 

1       r 1 
—   [b/a + k  (1  - b/a)J 

Ec   a  (1 

2/Q2 

re 
— +  1)( 
2 

1   - b^/ 

v2/ 2 b  /a 

/) 
2 

n    Et 

1 + b/all 1 

b/a    JJ        n2 

(1  - b/a)- 

b/a 
(63) 

where^   in each  of the  above  equations, 

1 
k = 

(! + b/a)   - El^Zä 
c 

and log b/a signifies the natural logarithm of b/a. 

The application of equations (l8), (l9)j and (20) to specific examples is 
E a 

very simple.  If the ratios, _£  and b/a, are known, the value of k can 
Et 

be determined.  Substitution of this value of k into equation (l8) yields 
an expression for the core transverse normal stress in terms of the uni- 
form lateral load, q, and the ratio of the radial distance to the middle 
surface of the outer facing, a, to the variable radial distance, r.  The 
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maximum normal stress In the core always occurs at the inside surface of 
the core, that is, at r = b. Substitution of the k value into equations 
(19) and (20) yields expressions for the forces per unit length of the 

facings, N» and N.,- in terms of the load, q, and the radial distance to 

the middle surface of the outer facing, a. Examination of the expression 
r 

for k shows that, in general, Ng and Ng are approximately equal since k 

is approximately equal to one-half in the practical range of dimensions 
and elastic constants.  If the value of the modulus of elasticity of the 

core approaches infinity, k becomes equal to TT-> then Ng = q —y- 

'       a ' 
and Ng = q     , . Thus, the statement that N and N are equal if Ec 

is infinite and b/a ** 1  is  approximately correct and becomes less accurate 
as the thickness of the cylinder Increases.  If E —»0, k —>0; and the 

external load is supported entirely by the outer facing. The solution 
given by equations (l8), (19), and (20) may be compared to Reissner's 
solution of the problem of the closed circular sandwich ring acted upon 

by a uniform radial load.2 If desired, equations similar to equations 
(l8), (19) .> and (20) can be easily obtained for the case of internal 
pressure, or for a combination of internal- and external pressure, by the 
methods used in this report. 

Equation (63), for the determination of the critical load on long sand- 
wich cylinders, is of practical interest only for n = 2. A value of n = 1 
represents, physically, a rigid-body translation of the cylinder, and 
values of n > 2 result in larger values of the critical load than those 
obtained if n = 2.  If, in equation (63), the integer 2 is substituted for 
n and the symbol p  is used to represent a uniform lateral pressure, that 
is, -q, the result is 

(P
2/E 2) k (1 

- b/a)' k)A^ 
\  (b/a)' 

Ec  . „wl - b2/a2 
(-^--H 2)(: 
2G re b /a 

E a (1 - (i ) 
^  ( 

h  Et 

1 + b/al      ]       [(I - b/a)2 

 ) log b/a . - p/Ec4 p  b/a 

b/a J      J      I (t ' (b/a)' 

k (1 + b/a)] + I 3 r 1 - k (1 - b 

(- 1)( 

log b/a  1 
b/a" ' 3 

1 - b2/a2   E_ a (1 - n2)     1 + b/a 

/a)] 

2G re 
^2/ 2 b /a 

-) + 
h  Et b/a 

^ + k (1 - b/e) 
a 

1 (1 - b/a)2 

h b/a 

(6*0 

^National Advisory Committee on Aeronautics Technical Note No. 1832, p. kk. 
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In the practical range of the values of the dimensions and the physical 
constants of the sandwich cylinder, equation (6k)  yields two widely sep- 
arated positive roots for p, the lower of which represents the critical 
pressure p  .  Consequently, p w may be obtained with very good accuracy 

if the term containing p in equation (6k)  is neglected. 

It is of interest to examine the results given by equation (61+) in cer- 
tain limiting cases. First, it is noted that the critical pressure be- 
comes equal to zero if either E or G fl is set equal to zero. This is to 

be expected in view of the assumption of membrane facings.  I~t is of 
greater interest to examine equation (6k)  with E  and G a  taken to be 

infinite.  In this case, equation (6k)  becomes 
r0 

(1 
cr 

Et 

3 (1 - b/a); 

2. 2 
1 + b /a 

(65) 

The value of p  obtained from equation (65) should be comparable to the 
cr 

value obtained from the formula for the critical pressure on a long homo- 
geneous cylinder if the moment of inertia used is equal to the moment of 
inertia of the spaced facings of the sandwich cylinder.  The formula for 
the critical pressure on a long homogeneous thin cylinder is— 

3 E I 

-5 (1 o ^ 

(66) 

If the mean radius, r , is taken equal to the mean radius of the sandwich 

cylinder, a "^  , and I is made equal to the moment of inertia of the spaced 
2 t  (a - h)^ 

sandwich cylinder facings,  —■■    "——,   equation   (66)  may be written as 

follows: 

Pcr a   (1   -  ■/)       3  (1   - b/a)2 

(1 + b/a) ̂5 
(67) 

Comparison  of equations   (65)   and  (6?)   shows  that they would be  equal  if 

/-,    ,   b2N                       ,          (l + b/a)5       ,     .   , 2/ 2\  ~  (l + b/a)5 

(1  + —5)  were  equa±  to -* p—'—.     (1 + b /a )  ~ J .—'—i— for thin 

cylinders,   i.e.,   for—1« 

a •     v-   ■   -  / -  ' i^ 

As  the b/a  ratio decreases   from a value  of 1, 

Timoshenkc elasticity,   p. 2l6. 
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equation (Ö7) becomes less accurate since it is derived on the basis of 
its being a thin cylinder with the pressure applied on the middle surface 
and thus fails to represent a thicker cylinder with the pressure applied 
on the outer surface. 

Equation (63) may also be applied to problems concerning the stability of 
long sandwich panels in the form of a portion of a cylinder hinged along 
the edges 0=0 and 9 = 2 a  (fig. 5).  If, In equation (63), n/a  is sub- 
stituted for n and -p Is substituted for q, the smaller value of p given 
by equation (63) represents the critical pressure on a panel whose dimen- 
sions and properties are known.  This solution presupposes the  unsyrametrlcal 
type of buckling indicated In figure 5} and therefore it may not yield the 
lowest critical pressure for panels of small curvature, that is, relatively 
flat panels. A relatively flat sandwich panel may buckle symmetrically with 
no Inflection points between the supüorts, as in the case of homogeneous 

7 
panels ,— 

Conclusions 

It is felt that the solutions presented in this report are accurate for 
sandwich cylinders with materials and dimensions such as to render the 
basic assumptions applicable. The core assumptions are probably suffi- 
ciently representative of all practical sandwich construction. The range 
of applicability of the solutions could be increased somewhat if the 
effect of the thicknesses of the facings on the overall stiffness of the 
cylinder were taken into account in the stability analysis. This would 
entail the use of shell theory rather than membrane theory in regard to 
the facings. Another extension of the problem which is of greater prac- 
tical Importance would be to obtain the corresponding solutions for 
cylinders of finite length.  A supplementary report containing the solu- 
tions for cylinders of finite length is planned for the near future. 
Numerical computations and curves based on the solutions contained in 
this report have been omitted since they will appear as limiting cases in 
the supplementary report. 

-S. Timoshenko.  Theory of Elastic Stability, p. 230. 
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a-rc + *°t£dr 

Figure 1.--Differential element of core of uniformly 
stressed cylinder. 
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SECTION VI 

Supplement to 

ANALYSIS OF LONG CYLINDERS OF SANIWICH CONSTRUCTION 

UNDER UNIFORM EXTERNAL LATERAL PRESSURE^ 

Facings of Moderate and Unequal Thicknesses 

By 

MILTON E.  RAVILLE,  Engineer 

p 
Products Laboratory,— Forest 

U.  S.   Department of Agriculture 

p 
Forest Products Laboratory,— Forest Service 

Summary 

A previous analysis of the problem of sandwich cylinders subjected to 
uniform external lateral loading is extended in order that results may 
be applied to sandwich cylinders having relatively thick facings of 
unequal thickness.  In the development of the stability criteria, the 
effect of the stiffness of the individual facings on the stability of 
the composite cylinder is taken into account, "Solutions are obtained 
from which the stresses and displacements in a stable sandwich cylinder 
may be determined, and an expression for the determination of the load 
at which a sandwich cylinder becomes elastlcally unstable is derived. 
The sandwich cylinder is assumed to consist of Isotropie shell facings 
and an orthotropic core. 

Introduction 

This report is a supplement to a previous report that contains a 
theoretical analysis of sandwich cylinders acted upon by uniform ex- 
ternal lateral pressure.  Formulas were derived for the stresses in 
the cylinder, and an expression was obtained from which critical 

1       I" 
—This report is one of a series prepared by the Forest Products 

Laboratory under U. S. Navy. Bureau of Aeronautics Order No. 01595 
2  and U. S. Air Force Order No. A.F. l8(600)-102. -* 
"Maintained at Madison, Wis., in cooperation with the University of L 

Wisconsin. i\ 
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pressures may be determined.  In that report It was assumed that the 
faalngs of the cylinder were thin enough to render membrane theory 
applicable and that the facings were of equal thickness. 

The purpose of this supplementary report is to present solutions for 
the stresses and for the critical pressures that apply to sandwich 
cylinders having moderately thick facings of unequal thickness. This 
requires that the bending moment and the transverse shear in the 
individual facings be considered in the development of the stability 
criteria. This extension of the previous work is felt to be of import- 
ance in view of the fact that an analysis based on membrane facings may 
prove inadequate as a design criterion in cases where relatively thick 
facings are used.  It is assumed throughout that buckling takes place 
at stresses below the elastic limit of the sandwich materials. 

The method of analysis used here follows closely the method used in 
the original report. The same core assumption, namely, that only 
transverse shear stress and normal stress on planes parallel to the 
facings are present, is used.  It is felt that this assumption applies 
very well to all practical sandwich constructions because of the rela- 
tively low load-carrying capacity in the tangential direction, of the 
core materials as compared to that of the facing materials. The facings 
are assumed to be homogeneous and Isotropie, and, as indicated pre- 
viously, they are analyzed on the basis of shell theory rather than 
membrane theory. 

Notation 

r, 9 

a 

b 

t 

E 

Ec 

polar coordinates 

radius to middle surface of outer facing 

radius to middle surface of inner facing 

thickness of outer facing 

thickness of inner facing 

thickness of either facing when t0 = tj 

modulus of elasticity of facings 

Poisson's ratio of facings 

modulus of elasticity of core in direction normal to facings 

modulus of rigidity of core in r - 0 plane 
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q Intensity of uniform external lateral loading 

aT>  ar>  ^c normal stress in the radial direction acting on the outer 
facing, on the Inner facing, and in the core, respectively 

_  _i   

ar, ar,  arc small normal-stress in the radial direction acting on the 
outer facing, on th6 inner facing, and in the core, 
respectively 

_   _i Tr0' Tr0    small shear stresses acting on outer and inner facings, 
respectively 

TLQJ,       small transverse shear stress in the core 
i 

Ng, Ng direct stress resultants in the tangential direction in 
the plane of outer and inner facing, respectively 

small direct stress resultants In the tangential direction 
in the plane of outer and inner facings, respectively 

small bending moments per unit length of outer and inner 
facing, respectively 

small resultant shear forces per unit length of outer and 
Inner facing, respectively 

u, u , u    radial displacements of outer facing, inner facing, and 
core respectively 

u, u , u^   small radial displacements of outer facing, inner facing, 
and core, respectively 

_i   

v, v , vc   small tangential displacements of outer facing, inner 
facing, and core, respectively 

T 
ee>   eQ unit tangential strains In outer and inner facing, 

respectively 

e., €., €fl  small unit tangential strains in outer facing, inner fac- 
ing, and core, respectively 

v N0 

V K 
%> 

"^■ai "^Q      small changes in curvature of outer and inner facing, 
respectively e' ^9 

n number of waves in circumference of cylinder 

a one-half the central angle of curved panel 

E„a (1 - n2) 
Eto 
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1a (1 - tLJ 

Jr9 

n 
2" 

12a 

12b 

Eto  (1  - b2/a
2) 

2Gr0 b   (1   -  ^2) 

A, B, A^, Bn, Cn,   Hr arbitrary constants 

Stress Analysis 

The sandwich cylinder is assumed to be long enough that the effect of 
the constraints at the ends is negligible. Under a condition of uni- 
form external loading, each cross section remains circular.  The dimen- 
sions of a cross section of the cylinder and the positive directions of 
the polar coordinates, r and 8,   are indicated in figure 1.  In order to 
avoid any confusion in regard to signs, the intensity of the external 
load is assumed to act in the positive r direction; obviously, a nega- 
tive value of q signifies compressive loading.  In the analysis which 
follows, the assumption is made that the core extends to the middle 
surfaces of the facings and that the load q is applied to the middle 
surface of the outer facing.  This assumption amounts to neglecting the 
half-thicknesses of the facings as compared to their radii. 

Equilibrium of Core 

As previously stated, the assumption is made that, in general, the core 
transmits only normal stresses in the direction perpenclicular to the 
facings and transverse shear stresses.  In the case of uniform external 
loading, it is noted that the transverse shear stress Is zero from con- 
siderations of symmetry, and the only stress present In the core is the 
normal stress in the radial direction, a '  —re Considering the equilibrium 

{i 
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of the differential element .of the core shown In figure 2, the sum- 
mation of forces in the radial direction results in the following 
equation; 

arc r d0 + 
dgrc 
dr r + dr ) d9 =0 

The differential element Is considered to be of unit length in the 
longitudinal direction.  The above equilibrium equation reduces to 

d0rc + frc 
dr    r 

0 (1) 

The solution of equation (l) may be written as 

^rc = Ec 7 (2) 

where, for convenience, the constant of Integration Is represented by 
Ec A.  Ec represents the modulus of elasticity of the core In the radial 

direction, and A is an arbitrary constant.  The radial displacement of 
the core, uc. Is related to the radial stress, ^Tc>  ^y "the following 

equation: 

duc 
^rc = Ec SF 

From equation (2) It follows that 

du„ 

(5) 

dr 

A 

r 

Integration of the above equation yields 

u = A log r/a + B (M 

The use of log r/a Instead of log r merely alters the arbitrary con- 
stant of integration. 

Equilibrium of Facings 

With reference to the differential elements of the facings shown In 
figure 5J It is seen that, when the cylinder Is acted upon by an" ex- 
ternal loading of uniform intensity, q, the only forces In the facings 
are the tensile forces per unit length Hg and N^.  ar and o^. in figure 
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5 represent the stresses exerted by the core upon the outer and inner 
facings, respectively.  An equilibrium equation can be obtained for 
each facing by summing forces in the radial direction on each differ- 
ential element, considered to be of unit length in the longitudinal 
direction.  The equilibrium equation which pertains to the outer facing 
is 

qa dö - ara d9 ,Ne d9 = 0 

This  equation   reduces   to 

Ne  =  a   (q   -   ar) 

or,   since  ar =   (a,
rc) 

% (^rc) 1 r  =  a i (5) 

In a similar manner, the equilibrium equation of the inner facing is 
found to be 

Na = b (a  ) 9 K   re' (6) 

From the application of Hooke's law along with the assumption that the 
tangential stress in the facings is uniformly distributed through their 
thicknesses, the following relationships are obtained: 

1^ Eto G0 (7) 

and 

Ne = E^ eg - (Ö) 

If the right-hand sides of equations (5) and (7) and the right-hand 
sides of equations (6) and (8) are equated, the following two equations 
result: 

ee - Et 

and 

-e = iT7 Kc) 
r = b 
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u     ,   u 
Since eg = TT anti e9 = b ' these two equations become 

Et. 1 " (arc) (9) 

and 

i  b  /  ■, 
u =Er: (arc) 

i     r = b 
(10) 

If continuity of displacements at the Interfaces Is assumed, then 

u = (u ) 
r = a 

and 

u = (u ) 
r = b 

The above relationships in conjunction with equations (2) and {h)  enable 
equations (9) and (lO) to be written as follows: 

B = I" ^ - Ec f) (11) 

and 
E b 

A log b/a + B - ■=%-  A 
Eti 

(12) 

Equations (ll) and (12) may be solved for A and B with the following 
results: 

A = ^k (13) 

and 

B = i^-k) (IM 

where 

b tn  Etn 
1 + - T2 - ^ log b/a 

a tl       Eca 

(15) 

IX 

WADD TR 6O-I33 187 Ik 

^ 



The substitution of the value of A given by equation (l?) into equation 
(2) yields the following expression for the radial stress in the core: 

a ffra = q f k (16) 

When the above value of CTrc is substituted into equations (5) and (6), 

the following two equations result: 

Ne = qa (1 - k)  : (17) 

and 

Ng = qak (18) 

The substitution of the values of A and B given by equations (13) and 
(ik)  Into equation (k)  yields the following expression for the core 
displacement: 

qa2 Et0 
uc  = Ft- [1  '  k  (1  " TTT 

loS r/a)] ^9) o c 

Since u =   (u  ) and u     =   (u  ) ,   then 
cr = a cr=b 

# (1   - k) (20) 
Eto 

and 

u'   = H^ k (21) 

Equations (l6) - (21) completely describe the stresses and displacements 
in the sandwich cylinder subjected to uniform external, lateral loading. 
In each of these equations the value of k is given by equation (15). 

Stability Analysis 

In discussing the stability of the sandwich cylinder under uniform 
external lateral pressure, the equilibrium of a slightly deformed 
element of the cylinder must be considered.  It is assumed that the 
stress situation that exists in this deformed element differs only 
slightly from the stress situation that existed just before buckling. 
The stresses before buckling are given by equations (l6), (l?), and 
(18).  Since the cross section of the deformed cylinder is no longer 
circular, the small changes in the stresses and the displacements result- 
ing from buckling will be functions of 6 as well as r. Following the 
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system of notation used in the originf;! report, a bar is placed over the 
appropriate symbol to denote the saall .stresses, strains, and displace- 
ments that occur when the cylinder goes from the initial uniformly 
stressed circular form to the slightly deformed configuration.  Again, 
it is assumed that the core extends to the middle surfaces of the fac- 
ings and that the load £ is applied to the middle surface of the outer 
facing. This assumption is now somewhat more restrictive than it was 
in the case of axial symmetry, since it now means that the effect of 
the interface shear on the bending of the facings and the displacements 
due to the bending of the Individual facings are neglected.  However, 
it is felt that, for cylinders witli shell-type facings, the results 
based on this assumption should be of sufficient accuracy. 

Equilibrium of the Core 

Since the cylinder is now considered to be slightly deformed, the core 
is also slightly deformed.  A differential element of this core is shown 
in figure it-.  In addition to the radial stress, ci r ^ given by equation 

(l6), a small radial stress, orc,   and a small transverse shear stress, 

T Q , due to buckling must be taken into account.  The differential 

element is considered to be in equilibrium under the action of the stresses 
shown.  Since the small change in the geometry of the core introduces only 
small terms of higher order into the equilibrium equations, the differ- 
ential element in figure k  is shown in its undeformed state.  The analysis 
of the core is exactly the same as that given In the original report, 
and for this reason only the basic equations will be repeated here. 

The equllibriura equations that apply to the core are obtained by summing 
forces in the radial and tangential directions in figure k,    Theseequi- 
librium equations are: 

bö re 
Or 

re 
r 

1 a: 

+ — 
r 

r9c 
"ST = 0 (22) 

and 

OTr0c 2T r9c 0 (23) 

The following stress-displacement relations are also applicable: 

äu_ 

and 

a-r.  = E re  "C ^r 

Tr0c = Gr0 

"1 äuc + avc _ v^ 
.r hd or   r J 

(2k) 

(25) 
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It was shown in the original report that the small radial and tangential 
displacements of the core can be completely determined insofar as their 
dependence on r is concerned.  Then, on the assumption that during buckl- 
ing the circumference of the cylinder subdivides into n waves, the dis- 
placement functions are written as follows: 

UC = K + Bn F + Cn loS fj cos n9 (26) 

and 

whe re 

and 

a 

r 
- n An + ±. 8n B = - n Cn (1 + log -) + Hn sin n9       (27) 

2G rö 

An, Br, Cn, and Hn are arbitrary constants. 

After the substitution of the expressions for uc and v given by equations 

(26) and (27) into equations i2k)   and (25), the expressions for the small 
core stresses become 

+ cj cos nS (28) 

and 

rr0c 
1 ^ 

n r n r 
sin n0 (29) 

It may be easily verified that equations (28) and (29) satisfy the equi- 
librium equations, equations (22) and (23)■ 

Equilibrium of Facings 

Figure 5 shows the differential elements of the facings of the slightly 
deformed cylinder.  In addition to the forces that exist just before 
buckling (given by equations (l6), (17), and (l8)), the small forces and 
moments that arise during buckling are shown in the figure.  In consider- 
ing the equilibrium of the facing elements, account is taken of the 
rotation and stretching of the facings which occurs during buckling.  As 
described in the original report, the initial central angle, d0, becomes 

/ 
lav 

a 09 
1 äfü 
a äe; de and l + i^I 

b b9 

1 ä%' 
b be2 

d9 
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- 
for the outer and inner facings, respectively, and the areas of the 
differential elements of the outer and inner facings become (l + eo) a dö 

and (l + eg) b do, respectively.  Three equations of equilibrium can be 

written for each facing; the differential elements are considered to be 
of unit length- in the longitudinal direction. 

Considering first the differential element of the outer facing, the sum- 
mation of forces in the direction normal to the surface yields 

q (1 + e0) a d9 - (qk + ö^Cl + e0) a d9 

1 äv       ö2u\ ÖQfl 
-   [qa   (1   -  k)   + NJ     1  + - — - —) d9 + —^ do   = 0 

a ae    ae2/ be e- 

If the relationship, eg = — + — vr, is used and small quantities of higher 

order -- that is, products of barred quantities -- are neglected, the above 
equation becomes 

l^ü 
N9 -SeT 

+ qa (1 - k) ( - + _ __ 
Va  a de2 

(30) 

The summation of forces in the tangential direction yields the following 
equation; 

ÖN0 
qa (l - k) + N + I qa (1 k) + Ne + go" do 

'rO   '       '    '-9' '    n0    ■   % i 1 + ^§9 
1 äfü 
a ä02 de = o 

If small quantities of higher order are again neglected, the above equa- 
tion may be written as 

5TJ, 

5e" 
e 

Qe rre (51) 

The third equilibrium equation of the outer facing is obtained by equating 
to zero the suuimation of moments about point 0, shown in figure 5-  Thus 

Mg + ( Mg + ^— de ) + Qg a d0 = 
^ 

The  above equation reduces  to 

aMe 
äe-+ aQe (32) 
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Similarly the three equilibrium equations which pertain to the Inner 
facing are obtained by summing forces In the normal and tangential 
directions and by summing moments about the point 0' using the differential 
element of the inner facing shown in figure 5. These equilibrium equations 
are: 

£% —1 
- - = b a + qak «'+ i ö2u, 

b de* 
(53) 

äN9 
+ QQ = - b T^ (3^) 

and 

äM„ 
50- + b ^ = (35) 

If equation (52) is solved for Qg and the resulting value is substituted 

into equations (50) and (5l)j the three equilibrium equations of the outer 
facing are reduced to the following two equations: 

and 

1 a%ig 
+ a ae2 

a^U.^.g) (36) 

ON, 9 1 (MQ 

a cJfT" (57) 59   a Se-   're 

Ii> like manner, if equation (35) is solved for 

stituted into equations (53) and (5^), the three equilibrium equations 
of the inner facing are reduced to the following two equations: 

le and this value is sub- 

and 

9  b 002 

hUg      1  dM^ 
SO   b W 

r    b  V     äö2 D 

b T re 

(58) 

(39) 

From the application of Hooke's law, the following tw9 expressions relating 
the small tangential forces per unit length, Ng and Ng, to the small tan- 

gential strains, eg and Tg, are obtained: 
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% = 
1 -^ 

p-e 

n = 
Eti 

y 

1 -.2 
Le 

(to) 
1 - ^ 

and 

Et. 
(^1) 

Also, the following two equations relating the bending moments In the 

facings, Mß  and Mg, to the changes In curvature In the facings, ^ and^g, 
are applicable:-S 

Et 5 

and , 
Et ' Mä = - 12(1 .V) -e ^) 

k 
Since™ 

€0 - Ü + i ^
v 

= a  a 5? 
i ü . 1 dv 

= b   b S9 

•% 
1 /Öv  ä2ü' 
a2 159  502 

and 

^    b2 Vöe    ae2 

equations (4o) - (k3)  may be written as follows; 

_   Etn   /Ü  1 5v\ 

1 - H2 Va  a 50/ 

^Timoshenko, S., and Goodier, J. Theory of Elasticity. New York, 1951. 
ft 

-iTimoshenko, S. Theory of Plates and Shells, First Edition. New York Uf. 
19k0. " ||,;; 

WADD TR 6O-I33 193 f-M 
! 

^ 



and 

, _  Et,    v    i av\ 

1 - H    Vb         b 50  / 

q                             Eto3         Z^- 6    IN 

12   (1   -  n2)   a2 Väe ae2; 

N2-I o u 

12 (i - M ) bc vae  äe" 

(45) 

(46) 

(47) 

The requirement is now made that there be continuity of displacements at 
the interfaces; that is, 

ü= (üj 

ü = (üJ 
r = b 

v = (vc) 

(48) 

(49) 

(50) 

and 

v =(vc) 
r = D 

(51) 

The  use   of equations   (kB)   -   (51)   enables  equations   (hk)   -   (1+7)   to be 
written as follows: 

Et /_        dv. 

V        de / 9 (1   -  u2)  ^ a 
(52) 

 f 

N„   = 
Et, 3V 

9 "b (i - ^)iUc: + be ■ r = b 
(53) 

Et 5 /öv       a2!! 
M   = -  2 /_£ c 

9        i2a2 (i - u2) Väe      de2 

and 

■4 
^2rr Etl^ Ac   . ^c\ 

12b2   (1  - n2) V ■) Vae     ae2 / 
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With the aid of equations (1+8) - (55) and the fact that 

Tr0 
r .= a 

1 

Tr9 
r _ b 

?r  = (ärc) 
r = a 

(56) 

(57) 

(58) 

and 

 ör = (ärc) (59) 
r = b 

the equilibrium equations of the fa-jings, equations (36) - (59))   may be 
expressed, entirely in terms of the core displacements and stresses.  For 
example^ if the right hand sides of equations (52), (5*0, (56), (58), and 
(1+8) are substituted for No, Mg, ~r0, Gr>   and u., respectively, in equi- 

librium equation (36),   the result is 

Et0     /_   ävc^          Et03      ^vc      a  u, 
( uc +  ) 7; 7    - 

a (1 - n2) \ C   ^0 4 = a   12 (1 - n2) a5 Vöö5   d0U  r = a 

= - a (ärc)    . 4- q (1 - k) (üc + -~Ar ■   (60) 
r = a o"  ^ r - a 

In a similar manner, equations (57) - (39) ciay be transformed, respectively, 
to the following three equations: 

(1 -+L
2
) Ue      äe2/r = a    12 (1 - ^2) a^de2      öe3 4 = a 

=a(rrec)      . (61) 
r = a 

Eti fa + ^ Eti3 ^^  - Ö^c 

b (i - ti2) V       ae / i2 (i - n2) b5 Vae5     beh ) 
r = b r  = b 

2_ 

.M»ro)r=i + ,tk(ü0^)r = b (6a) 

and 
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Etj fine      b2vc\ Et^ /ä^      ä3ü( 

V00      öe2 / 12 n - u2) b3 Väe2      äs? / b (i - n2) V00      ä02 / 12 (1 - n2) b5 Väo2      Ö05 
, r = b r = b 

= - b (-rec) (63) 
r = b 

If the expressions given by equations (26) - (29) for the core displace- 
ments and stresses are substituted Into equations (60) - (63)> four equa- 
tions containing the parameters A^ Bn, Cn, and Hn are obtained. These 
four equations are: 

[(n2 - 1) r (1 - k) - (n2 - 1)] A + [(n2 - l) 7 (l - k) + B (l + ns d" ) n n        o 

+ (1 + n^ ♦0) -ß] Bn + [ß - n2 (1 + n2 *0)] Cn 

+ [n (1 + n2 «0)] Hn = 0 (61+) 

(n2 - 1) A^ + [ - 5^ (1 + ♦ ) - (1 + n2 * ) + ^p ] B n  "   "n"    o'   "'       o'  JJ2 ' n 

+ [n2 (1 + *0)] Cn + [ - n (1 + $0)] Hn = 0 (65) 

[■(nc -  1)   7k ^ -   (n^  -  1)]  An +   [(nc  - l)  £rK_£+6na(l + n«= ^ 

+ f (1 + n1* 0^  + ß ^] Bn +  [(n2 - 1)  7k/ log b/a - ß | ^2 

and 

- (n2 - 1) log b/a - n2 (l + n2 ♦1)] Cn + [n b/a (i + n2 4^) ] !!„ = 0 

(66) 

(n2 - 1) A, + [ - 6n f (1 + ^ - f (1 + n
2 ^ - ^ ^ Bn 

+ [(n2 - 1) log b/a + n2 (1 + «j)] Cn + [- n b/a (l + *l)]  ^ = 0 

(67) I 
where, in each of the above equations, 

2 k qa (1 - ^ ) p- 
Eto |.;- 
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and 

6n ' ^re ' 
n2        ' 

2 

*0 " 12J 

**  " 12b2 

p - M  (1 - •.2) 
Et0 

f the  terms in eq.ua 
An'  Bn>   Cn> and Hn that appear In the displacement equations of 

the cylinder.  A buckled form of equilibrium is possible only if equa- 
tions (6k)   -  (67) yield solutions for these parameters which are differ- 
ent from zero. This requires that the determinant of the coefficients 
of these parameters must be equal to zero. This determinant may be 
written as follows: 

w, 
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The use of equations (l6) through (21) is self-explanatory; if the dimen- 
sions and material properties of a given sandwich cylinder are known, the 
stresses and displacements in terms of the external load, q, may be easily 
computed.  In the case of sandwich cylinders having facings of equal thick- 
ness, equations (l6) - (21.)   reduce to equations (l8) - (23) of the original 
report.  It is of interest to compare equations (l6) - (2i) with results 
obtained by Reissner.-*- If Reissner's equations are expressed in the notation 
used here, the following equations for the cylinder stresses result; 

1 + |^ (1 - b/af 

and 

(at middle surface of core) 
I + h/t 2 + f^ (1 - b/a) 

Equations (l6) - (18), for facings of equal thickness, may be written as 
follows: 

— -   log b/a 
a  bca   -  ' 

N, 9 qa 
1 + b/a - |^ log b/a 

" 1 

1 + b/a ' Eca  l0g b/a 

and 

Nfl = qa 

0rf, (at middle surface of core) = q 
1 + b/s 1 + b/a - |i- log b/a. 

bJca 

Since the first term in the series expansion of log b/a is - (l - b/a), it 
may be noted that, for cylinders with b/a ratios close to I, the equations 
of Reissner yield results that are very nearly the same as those given by 
equations (l6), (l?)* and (l8).  Reissner's results are based on the assump- 
tion that a - b < < a and hence become increasingly less accurate as the 
cylinder thickness is increased.  

■^Reissner, Eric,  Small Bending and Stretching of Sandwich-type Shells. 
National Advisory Committee on Aeronautics, Tech. Note 1852.  19J'9 . 
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vhere 

Eto (1 - ^ 

2Gr0 b (1 •) 

Equatic:i (70), with n = 2, yields values of ycr  within 5 pfercent of fche 

values obtained from equation (69) for usual sandwich constructions. 

For cylinders having very thin facings (membrane facings) of equal thick- 
ness, ♦Q and 41^ are assumed to be zero, and equation (70) reduces to 

cr 
(n^ 1) 

1 - b 

1+% a 
1 + 

n2 Et (1 - °) 

2G r0 b (1 - v) 

(71) 

Equation (7l)j for n = 2, becomes 

L -* 
a 

' cr 

1 + ? 
2Et (1 - ^) 

1 + 

're b (1-- n") 

(72) 

The value of q      is  then determined from the definition previously given. 

Icr = Et 

a (1 - ^) 
7cr 

Equation (72) may be used as a good approximation to the expression ob- 
tained in the original report (equation 6h)  for the critical load on 
cylinders with membrane facings. 

It is of interest to examine the results given by equation (68) for certain 
limiting cases other than that of membrane facings. Some of these results 
are given in table 1.  In each of these   limiting cases, <ti0 and ^ are 

neglected as compared to 1. 

Equation (68) may be used for determining the approximate value of the 
critical load on long sandwich panels in the form of a portion.of a cylinder 
hinged along the edges 0=0 aiid 0 = 2a as  shown in figure (7)-  If, in 

.'ADD TF. 60-133 201 

L 



equation (68), it/a is substituted for n, the Bmaller absolute value of 
£ obtained from equation (68) represents the critical load on a panel 
whose dimensions and properties are known. This solution applies to the 
unsymmetrical type of buckling shown In figure (7).  If> as in the case 
of relatively flat panels, symmetrical buckling with no inflection point 
between the supports occurs, equation (68) is not applicable. 

Conclusions 

The purpose of this report was to extend the previous work done in con- 
nection with sandwich cylinders subjected to uniform lateral loading by 
taking Into account the effect of the stiffnesses of the individual fac- 
ings of the cylinder and also by making the results applicable to sand- 
wich cylinders having facings of unequal thickness. The results Indicate 
that for the majority of sandwich cylinders the analysis based on membrane 
facings is sufficiently accurate. However, for cylinders having relatively 
thick facings, say in the neighborhood of one-fourth of the core thickness, 
the facing stiffnesses have an appreciable effect on the critical load on 
the composite cylinder.  Since the magnitude of the effect of the facliig 
stiffnesses is dependent not only on the dimensions of the cylinder but 
also 00 the mechanical properties of the core and facing materials, equa- 
tion (68) of this report should be used for computing the critical load 
if indications are that this effect may be important.  In all cases of 
sandwich cylinders having facings of unequal thickness, the equations of 
this report should be used for computing stresses prior to buckling and 
for the determination of critical loads. 
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Table 1.--Results   obtained with equation  68 for certain 
limiting cases 
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OUTER  FACING 
CORE 

INNER FACING 

Figure  1.--Cross  section of  sandwich cylinder. 
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VII 

BUCKLING OF SANDWICH CYLINDERS OF FINIIE LENGTH 

UNDER UNIFORM EXTERNAL LATERAL PRESSURE* 

By 

MILTON E, RAVILLE, Engineer 

Forest Products Laboratory,** Forest Service 
U. S. Department of Agriculture 

Summary 

A theoretical analysis is made of the problem of the buckling of 

circular cylinders of sandwich construction acted upon by uniform ex- 

ternal lateral pressure. The solution obtained is based on the assump- 

tion that the sandwich cylinder is comprised of Isotropie, membrane 

facings and an orthotrop-ic core.  The mathematical solution of the 

problem, which is in the form of a characteristic determinant of sixth 

order, is applicable to sandwich cylinders of any length and of any core 

thickness. Numerical results are obtained for various values of the 

parameters that enter the problem, and curves are included which illus- 

trate how the critical load varies as the values of these parameters are 

varied. 

*rhis report is one of a series prepared by the Forest Products 
Laboratory under U. S. Navy, Bureau of Aeronautics Order No. 01595« 

♦^Maintained at Madison, Wis., in cooperation with the University of 
Wisconsin. 
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Introduction 

Sandwich construction, as It Is usually employed, consists of two 

relatively thin sheets of a material that has comparatively high 

strength and stiffness properties separated by and bonded to a relative- 

ly thick layer of a lightweight material that has comparatively low 

strength and stiffness properties. The two outer sheets are commonly 

called "facings," and the Inner layer Is commonly called the "core." 

Sandwich construction results in a composite structural element having a 

higher strength-weight ratio than can be obtained through the use of a 

single homogeneous material. For this reason, its major fields of ap- 

plication are in structures in which weight is a prime factor, such as 

aircraft and guided missiles. However, the development of improved ad- 

heslves and the Improvement of methods of fabrication are making its use 

practical in an Increasingly large number of different types of 

structures. 
I 

With the Increased use of sandwich construction has come an in- 

creased need for reliable design data. Much work of both a theoretical 

and an experimental nature has been done in an effort to provide this 

needed information. The physical properties of many of the different 

materials used in sandwich construction have been determined, and analy- 

ses of a number of stress and stability problems have been performed. 

Progress has been somewhat retarded because of the many variables that 

must be taken into account in sandwich analysis and the fact that the 

analysis of a layered system is Inherently a difficult problem. A rath- 

er complete bibliography of the part of this work that pertains particu- 

larly to 'shells and shell-like structures is contained in a recent U. S. 

Navy publication (l). 
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The purpose of this thesis Is to obtain the solution for the 

critical load on circular sandwich cylinders of finite length subjected 

to uniform external lateral pressure. The critical load is defined as 

the intensity of pressure at which the cylinder buckles due to lack of 

stiffness. This particular problem was chosen because it represents a 

fundamental problem in sandwich analysis that has not previously been 

solved. The need for such an analysis has arisen in connection with the 

design of certain component parts of aircraft and guided missiles. It 

is believed that the method of analysis used here is somewhat more rig- 

orous than methods that have been used to obtain solutions to other 

problems in sandwich analysis. For this reason, the general method of 

approach may be of use in obtaining solutions to other new problems as 

well as in obtaining better solutions to some problems that have already 

been solved. The solution contained in this thesis represents an exten- 

sion of a previous solution of the problem of the buckling of long sand- 

wich cylinders (2), 

In this thesis it is assumed that the sandwich cylinder is com- 

prised of very thin, Isotropie facings of a relatively stiff material 

separated by an orthotropie core. The analysis of the facings is based 

on membrane theory.* The core is considered to have such a low load- 

carrying capacity in the tangential and longitudinal directions as com- 

pared to the facings that the normal stress in the core in these direc- 

tions and the shear stress in the core on planes perpendicular to the 

facings and in these directions may be neglected. This core assumption 

*An analysis taking into account the stiffnesses of the individual fac- 
ings may be made along the lines illustrated in Ref. 5- 
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has been widely used in sandwich analysis and is known to represent ac- 

tual sandwich construction very well. The fact that no further simpli- 

fying assumptions in regard to the core are needed, other than the as- 

sumption that it behaves as an elastic continuum, is emphasized. It is 

felt that some analyses of sandwich construction are not sufficiently 

accurate in certain ranges of physical properties and dimensions because 

of additional simplifying assumptions made In regard to the core. The 

action of the core and facings is related by the assumption that their 

displacements are equal at the interfaces between the core and facings. 

These interfaces are assumed to be at the middle surfaces of the facings. 

The method used for establishing the stability criterion is simi- 

lar in concept to that used by Timoshenko in the «analysis of the buck- 

ling of homogeneous cylinders of finite length subjected to uniform ex- 

ternal lateral pressure.* The assumption is made that, for pressures 

less than the critical, the circular cylinder remains circular and the 

only stresses present are a uniform circumferential stress in the fac- 

ings and a uniform radial stress in the core.  In discussing the buck- 

ling of the sandwich cylinder, only small deflections from this uniform- 

ly compressed form of equilibrium are considered; thus, the stresses in- 

duced in the cylinder as it goes from the circular to the slightly de- 

forced configuration may be considered small as compared to the pre- 

buckling stresses 

*See Ref. k,  Art. 83. 
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r, B,  z 

a 

b 

t 

I 

E 

V- 

G 

Ec 

Gre 

Grz 

q 

k 

Notation 

radial, tangential, and longitudinal coordinates, 
respectively 

radius to middle surface of outer facing 

radius to middle surface of inner facing 

thickness of each facing 

length of cylinder 

modulus of elasticity of facings 

Poisson's ratio of facings 

modulus of rigidity of facings 

modulus of elasticity of core In direction normal to 
facings 

modulus of rigidity of core in r6 plane 

modulus of rigidity of core in rz plane 

intensity of uniform external lateral loading 

Et log£ 
1 + |-^;—- a    E„ a 

rS'  rz 

u , v , w 
c  c  c 

r   0   z 
c   c   c 

7re.' 7TZ'  76z, 

WADD TR 60-133 

small normal stress in core in radial direction 

small transverse shear stresses in core 

small radial, tangential, and longitudinal core dis- 
placements, respectively 

small radial, tangential, and longitudinal core 
normal strains, respectively 

small radial, tangential, and longitudinal core 
shearing strains, respectively 

number of waves in circumference of buckled 
cylinder 

213 

\ 



«a 
/ 

ane 
20. rö 2 

%' ee small normal strains In tangential direction In 
outer and Inner facings, respectively 

z z 
small normal strains In longitudinal direction in 
outer and inner facings, respectively 

u, v. w small radial, tangential, and longitudinal dis- 
placements of outer facing 

U',  V,  wf small  radial,   tangential,  and longitudinal dis- 
placements of inner facing 

V V V normal forces and shear force per unit length of 
outer facing 

Me ' H: ' **z 
normal forces and shear force per unit length of 

inner facing 

E a (1 - n2) 
c  

Et 

qa (1 - n2) 
Et 

log natural logarithm 

V Bn' Cn' Dn' L , R arbitrary constants 

h 
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Mathematical Analysis 

In the analysis of the sandwich cylinder, cylindrical coordinates 

r, £, and_z are used; the dimensions of the cylinder and the positive 

directions of the coordinates are Indicated in figure 1. The radii to 

the middle surfaces of the outer and inner facings are denoted by a and 

b, respectively, and the thickness of each facing is denoted by _t. The 

origin of the coordinate system is placed at the middle cross-section of 

the cylinder whose length is denoted by /. Since £ is considered to be 

positive when it acts in the positive r-directlon, buckling occurs at a 

negative value of (j. 

As mentioned previously, the cylinder at the instant before buck- 

ling is assumed to be in a state of uniform compression with the same 

stress condition existing in each cross-section. This assumption amounts 

to saying that the ends of the cylinder are not supported until after 

the cylinder has been initially compressed by a uniform load Just less 

than the critical load. The expressions for the pre-buckling stresses 

are known,* and they are shown In figure 2. The radial stress in the 

core is equal to q — k and the circumferential force per unit length in 

the outer and inner facing is qa (l - k) and £ak, respectively, where £ 

is the intensity of uniform external lateral loading in the positive r 

direction and 

Et log | 

a "  Ec a 

■»See Ref. 2. 
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In discussing the equilibrium of the cylinder after it has buckled into 

a slightly deformed shape, it is assumed that the existing stress con- 

dition differs only slightly from the stress condition shown in figure 2. 

The analysis of the equilibrium of a differential element of the core of 

the deformed cylinder and of differential elements of the facings of the 

deformed cylinder is considered next. 

Equilibrium of the Core 

A differential element of the deformed core is shown in figure 3. 

The stresses, a  ,   r    , and T , resulting from buckling are assumed to 
r  r9      rz 

be small as compared to the pre-buckling stress, q — k. As indicated 

previously, the assumption is made that the core and facing materials 

are such that the stresses, a , a   ,   and T , in the core may be neglected. 

The effect of the changes in geometry in the core was found to be negli- 

gible; therefore, for simplification, the equilibrium equations are writ- 

ten on the basis of the original geometry of the element.  The summation 

of forces in the radial direction results in the following equilibrium 

equation: 

d q ^ k 
(- q Ü k -a  ) rdedz+ (q^k + a_ + — dr + r—i 

r     r '      r     ar       dr 
dr) 

[r + dr) de dz + 
a T 

r© 
a T 

de dr dz + 
be d r 

(r + dr) dr d9 dz = 0 

If terms containing the product of more than three differentials are neg- 

lected, the above equation may be written as 

da ÖT 
r   r  1  re   + — + +   

9r   r   r ö0    öz 

rz 
= 0 
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The summation of forces in the tangential direction yields 

- T  r dfl dz + (T  + —i^ dr) (r + dr) dfl dz + T - dr d0 dz » 0 
rS r0 re 

or,  neglecting differentials of higher order, 

_£g + EZ. = o 
är r (2) 

Finally, the summation of forces In the longitudinal direction yields 

-T  rdedz + (T  + —r^S. dr) (r + dr) 06 dz = 0 
rz -w 

or 
ÖT      T 

or r  . (3) 

If it is assumed that during buckling the generators of the cyl- 

inder deflect into a half-wave of a sine curve and the circumference 

subdivides into n waves, the core displacements take the following form: 

u = f (r) cos n9 cos -r^- 
C     X JJ 

v = f (r) sin n0 cos 
c   2 i 

«z (1*.) 

w = f,(r) cos n0 sin — 
c   3 i 

where u , v , and w represent the small displacements of the core in 
c  c    _c 

the r, 9, and z_  directions, respectively.  At the ends of the cylinder 

a2u 
u    and  ~ 

c ^2 bzc 
are both zero,  which represents  the  conditions  of simply- 
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supported edges. The displacements u . v , and w are related to the 

core strains by the following equation^ 

äu                         u            dv                         dw  £  . ol      c.  c 
Or     '       e0c      T     rW '       €*c      dz 

äu   äv   v du   dw 

rec  r 06   dr   r '  rrZc  dz 
+ dr ' (5) 

, dw   dv 
7   = i_= + _£ 
ezc r äe  dz 

Also, since o« and a are assumed to be zero. 

du 
a,, = E e  = E —2. 
r        c rc   c dr 

(6) 

in addition to 

du   dv   v 
(7) 

and 

du   dw 
T  =07   = G  (T— + r—) rz   rz rz    rz 'dz   dr ' (8) 

If the expressions for the displacements given by equations (k)  are sub- 

stituted into equations'(6), (?), and (8) and the resulting expresslons 

for the stresses are required to satisfy the equilibrium equations(l). 

*See Ref. 5, p. 505. 
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(2), and (3), the functions of r that appear in equatlona (I4) may be 

determined explicitly, thus enabling equations (U)  to be written as 

follows: 

uc = [AJJ — + Bna + Cna log I + Dnr] cos n0 cos nz (9) 

vc = IrT (V ^ " n V " n Cna ^ + 1O« 5) + 

n D r log I + L r] sin n© cos £5. 
"an 1 

(10) 

wc = [X  Ana log § + \ Bnr + \ Cnr (log £ - l) + X Dna 

(l T " -| lo8 5) tv] cos n0 8in r 
(11) 

where X.  = 5£ 

Jne 
Ec   nf 

^rS  2 

z   G rz 

and A , Bn, C , Dn, L . and R are arbitrary constants. 

If equations (9), (10), and (ll) are substituted into equations (6), (7), 

and (8), the expressions for the core stresses become 

:- 

r ^ Ec (- ^ V Cn f + Dn) =
06 n0 c°s f (12) 
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p^-'- 

\e-~-^^   sin nö cos "I ^5) 

D 
_£ a   „0  „,„ «z 

rz     c x. r 
T__ a - E_ -Ü ?■ cos n0  sin ~ (ii) 

It may be easily verified that equations (12), (l?)) and (li*) satisfy 

the equilibrium equations, equations (l), (2), and (5). Furthermore, 

because of the manner in which they were derived, it may be stated that 

the right-hand sides of equations {9)>   (lo), and (ll) are unique func- 

ticis insofar as their dependence upon r is concerned. 

EquilibriuJi of the Facings 

Differential elements of the facings of the deformed cylinder 

are shown in figure I»,  The quantities N„, N„, N . N , N„ , and N_ ~ 
9      6       z  z  6z      9z 

represent normal and shear forces per unit length of the facing upon 

which they act. The core is assumed to extend to the middle surfaces 

of the facings, and the stresses (a )   ,   (a  )    ,,   (T .)   , (T  )   , r r=a   *_£=fr   rg/r=a-' 2_£z_£=s- 

(T -.)  , .and (T  ) , are the stresses exerted by the core on the fac- 
r9'r-o rz/r=D J 

ings as a result of buckling.  All of the above quantities are assumed 

to be small in comparison to the pre-buckling stresses shown in figure 

h  as functions of the intensity of loading, <^. The bending moments and 

transverse shear forces in the individual facings are neglected, in ac- 

cordance with membrane theory.  In formulating the equilibrium equations 

that auply to the facings, the effects of the rotation and stretching of 
j 

the facings must be taken Into account. Because of the stretching of iS 

the facings, the areas of the differential elements.of the outer and 
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Inner facings become (l + e ) (l -«- e ) a d9 dz and (l + €') (l + e') 
 9 z 8 z^ 

b d9 dz, respectively. Since the middle surface strains are small quan- 

tities, their products may be neglected, and the differential areas of 

the outer and inner facings are expressed as (l + e + € ) a d0 dz and 
 8   z    

(l + e' + e') b de dz, respectively.  The difference in the amount of 
 0 z  

rotation of the sides AB and CD with respect to the z-axis of the cyl- 

inder causes the central angle of the outer element to change from do 

o 

to  {l + - ~  - - 2Ji) d0.  Similarly, the central angle of the inner 
a dS  a ^ 2 
 , 2 

element changes from dS to  (l + r- -eg—  - r  )  d0.     Also,   the differ- 
09 

ence in the amount of rotation of the sides AB and CD with respect to 
-.2 

the r-axis is (—~ +  —) ; the corresponding difference in rotation of 
äeäz  äz 

the sides A'B' and CD' of the inner element is ,d2v' + 1^) 
öeöz  dz 

The 

foregoing expressions for the differences in rotation are as given by 

Timoshenko* and verified by Osgood and Joseph.**  Since N and N' are 

small quantities, the relative rotation of the sides upon which they act 

may be neglected; the inclusion of this effect leads only to small terms 

of higher order. 

The necessary changes in the geometry of the facings having been 

established, it is new possible to write three equilibrium equations 

for each facing.  Considering first the differential element of the 

outer facing, the summation of forces in the direction perpendicular to 

the surface of the element results in the following equation: 

«See Ref. it. Art,. 79. 
**See Ref. 6. 
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(qk + (a )   ] (l + e. + 6 ) a do dz + q. (1 + e. + e ) a do dz 

- [qa (1 - k) + N,, ] (1 + e,) (l + I $1 - I dfu) d© dz - 0 
e     z     aö0  a^s 

If the relationships e^ = H + i ^ and ^z = ^ »re used and terms con- 

taining the products of the small stresses and displacements are neg- 

lected, the ahove equation of equilibrium reduces to 

N
e = " a ("rU + ^ " V  <U + ^ (15) 

The summation of forces in the tangential direction perpendicular to the 

rz plane yields 

ON 
6 

-  [qa (1 - k) + N0] (1 + ez) dz + [qa (l - k) + H0 + jg- d0] 

(1 + ez) dz - N0z (i + €e) a d0 + (N0z + _*£ dz) (l + €0) 

a do - (T _)   (l + €„ + G ) a d0 dz = 0 r0 r=a     9   z 

If terms containing products of the small stresses and strains are neg- 

lected, the above equation reduces to 

, öN.    an 
1  0 ^    ÖZ    /    X (16) 

The summation of forces in the tangential direction parallel to the 

z^-axls yields 
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dN 
- Nz(l + eg) a d0 + (Nz + g^) (l + e0) a dfl - WQz  (l + ej  dz 

ON 
+ (Nfl, + -^—  d0) (1 + 6 ) dz ~ (T  )   (1 + ea + 6 ) 

0z   ÖS z       rz r=a x    0       z 

a d0 dz - qa (1 - k) (^-Z_ + ^H) dfl dz - 0 
dedz  dz 

If small quantities of higher order are again neglected, the above equa- 

tion of equilibrium reduces to 

ÖNz + i 
ÖNez 

dz   ä bd 
b v    ^ bu\ 

^z)r=a^^-^(§^^) (17) 

The three equilibrium equations pertaining to the inner facing are ob- 

tained In a similar manner and may be written as follows: 

e     r r=b    b       ^2 

b de dz lrreK*b 

(18) 

(19) 

and 

ON'   , öNA V2,,  >. , 
-(T  ) K + q 2: k (2_LL + ^LL) n rz'r=b  ^ >,  xAflA,  ^ ' 

z + 1  9z. 
dz  b ae b   äedz  äz 

(20) 

On the basis of Hooke's law, the following stress-strain relations in 

the facings are applicable: 

*e-^(*B+»ez) (21) 
^ 
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'6' (22) 

N  = Gt 7  = -r^-T 7Ä 
9z      9z  2(1-^) öz 

(23) 

Et 
2 (ee + ^ {2k) 

and 

(25) 

Et N  = Gt 7'  = -, 
Sz     '0z  2(l-Hi) 0Z 7;. (26) 

where E, G, and v  represent the modulus of elasticity, the modulus of 

rigidity, and the Poisson's ratio of the facings, respectively. Since 

the strain-displacement relations given by equations (5) are applicable 

to the facings if r is replaced by a for the outer facing, r is replaced 

by b for the inr.er facing, and the corresponding displacements of the 

facings are substituted for the core displacements, equations (21) 

through (26) may be written as fellows; 

SI. (H + i öv    &£) 
5 a  a d9  * bz x-u 

(27) 

H    Et f    u  u öv  dw. N
z = —j U ä + e sr + sr) do  oz (28) 

> 
IS- 
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N Et   /dv 1  äw. 
9z       2(l+ß)     bz      a 00 (29) 

„.   Et ^u' ^ 1 dv1    ÖW. 
(50) 

z  ,2b   b öe   dz 1-H 
(31) 

and 

Et  ,ävj_ + 1 dw'x 
öz  2(1+^)  äz   b de 

(52) 

If continuity of displacements at the cylinder Interfaces Is assumed, 

remembering that the core Is considered to extend to the middle surfaces 

of the facings, then 

U = K^r . c r=e u' = (u ) ^ 
c r=b 

v = (v ) 
c r=a 

V = (v ) 
c r=b 

w = (w ) 
e r=a 

W = (w ) 
c r=b 

The above relations enable equations  (2?)  through (32)  to be expressed 

as follows: 

N,, = -Et_ (!= + I Jlc + , J^) 
pa        a 00 

1-H 
dz (35) 

Pv 
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'- 

Z  ,  2   a   a 60   dz r=a 1-H 
/ 

Et  / c , 1  c> 
»^■5(^T(äf*r5f'r- <») 

Et (_£ + I _£ + ^ _£) (56) 
9  , 2 b   b de     dz r=b 

u     äv   äw 
N' =^M^+a--£ + -^) (37) z  ,  2   b   b do   dz r=b 

and 

N'  =^l_(^+i^) (58) 
Sz  2(1-Hi) dz   b de r=b 

Also, if account is taken of the continuity of displacements at the 

interfaces, the equilibrium equations of the facings, equations (15) 

through (20), may be written as follows: 

d2u 
Np = - a (ar  + q (1 - k) (u +  £.) (59) 
e       r r-a de2    r=a 

i _i + _Ö£ = (x .)       , (1*0) 
a de    dz     re r=a 

dH   , dN. d2v„  du„ 
_J.+ i_££=(T )   + q (1 . k) (—-£•+ —£■) (Ul) [ 
dz   a do     " r=a äeäz  dz yr=a |^ 
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ä2ue 

06 
(hz) 

b 3e    dz " ^rsK^b (k3) 

and 

dz   b  de ^r-b + ^ F k (äiä^r-b (^) 

If the expressions for the facing stresses given by equatla» (53) through 

(58) are substituted Into the above equations and then a further substi- 

tution is made of the expressions for the core displacetaents and stresses 

given by equations (9) through (ik),  six equations containing the para- 

meters An, Bn, Cn, D . L . and R that appear in the equations for the 

displacements of the core, equations (k),   are obtained. These equations 

may be written as follows: 
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E„   „2 
5  =  £_ - 2_ 

6 = 'c 

■>   «a \ = — 

Equations (1*5) through (50) are satisfied if the constants A , B , C , Dn, 

L , and R are all equal to zero. This represents the uniformly com- 

pressed circular form of equilibrium of the cylinder. A buckled form of 

equillbrluni is possible only If equations (1*5) through (50) yield non- 

zero solutions for the constants.  This requires that the determinant of 

the coefficients of these constants be equal to zero. This determinant 

is shown on the following page. 
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The lowest, real, negative value of a for which this determinant equals 

zero is proportional to the critical load on the sandwich cylinder; this 

value of a will be referred to hereafter as a . After this value is — cr 

determined, the value of the critical load is obtained from the defini- 
■ 

tion of a given previously, that is, 

a      a (l-n2) 
a  = -££  
cr     Et 

Numerical Computations 

Since the determinant in equation (5i) contains the eigenvalue, a, 

in four of the six rows, the expansion of this determinant would result 

in a fourth order algebraic equation in a.     Only the lowest of the four 

roots of this equation, the root that corresponds to the type of buckling 

illustrated in figure 5» is considered. Actually, for very short cyl- 

Inders the root that corresponds to a face wrinkling type of buckling may 

'become the lowest; a satisfactory analysis of this type of buckling re- 

quires that the stiffnesses of the individual facings be taken' into ac- 

count. Since this analysis is based on the assumption of membrane fac- 

ings, no attempt is made to determine the critical loads for this type of 

buckling. 

A literal expansion of the determinant in equation (5l) was found 

to be impractical. It was decided that numerical solutions obtained by - 

the use of machine methods would be the most practical way to obtain de- 

sign data.* Originally, the sixth order determinant as expressed in 

*The facilities of the Numerical Analysis Laboratory of the University of 
Wisconsin.were utilized for this purpose. 
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equation (51) was used as a basis for numerical solution. However, due to 

Inherent difficulties Involving the subtraction of large numbers of almost 

equal magnitude, It was found that sufficient accuracy could not be ob- 

tained from this approach. The sixth order determinant was then reduced 

In literal form to the fourth order determinant shown on the following 

page. A procedure was devised from which the desired eigenvalue can be 

determined from this determinant by trial and error. For a given set of 

parameters containing the dimensions and physical constants of the cyl- 

inder, the assumed value of the eigenvalue is varied until the value of 

the determinant becomes equal to zero.  In this procedure each of the 

twenty-four terras in the expansion of the fourth order determinant Is com- 

puted independently and their sum is accumulated subsequently. This elim- 

inates the previous difficulties in connection with losu of accuracy. 

The numerical results obtained are shown in Tables 1 through 7- 

The values are believed to be correct to three significant figures. More 

significant figures can be obtained by simply increasing the number of 

trials used. Curves based on the values given in the tables are shown in 

figures 6, J,  and 8. 
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DlscuBslon of Results 

The curves ehown in figures 6, 7, and 8 are sufficient to Illus- 

trate how the value of the critical load varies when the parameters 

representing the dimensions and physical constants of the sandwich cyl- 
E E 

Inder are varied.  The ratios,   - k  and —2— = 10, were chosen since 
rt?      rz  

they represent average values of these quantities for honeycomb cores, 

the type most commonly used in sandwich construction. Computations were 

also made with the values of these ratios interchanged since either situ- 

ation is possible depending upon the orientation of the core in fabrica- 

tion.  The numerical results shown in Tables 1 through k  and the curves 

shown in figures 6 and 7 are based on the value of ß =■ 1.  This value 

represents a cylinder that has a weak core; that is, a core having rela- 

tively low values of E , G „, and G  . The numerical results shown in 
c  rd rz 

Tables 5 through 7 and the curves shown in figure 8 are based on the 

value of p = 1,OOP.  This value of ß represents a cylinder having a 
E 

stiff core. Since 3 depends not only upon the ratio, —, but also upon 
E 

the ratio, —, the practical range of values of ß is quite wide. Most 

constructions have dimensions and physical properties such that they lie 

in the range between ß = 1 and g = 1.000.  All of the computations are 

based on the value of .5 for the Poisson's ratio of the facings. Re- 

sults were obtained for only two different ratios of the radius of the 

inner facing to the radius of the outer facing; that is, —  = ,95 and 
a  

— = .98. The procedure for machine computation was set up so that any or 

all of the values of these parameters may be changed without any 

difficulty. 
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The results Indicate that, for cylinders having relatively weak 

cores, it is advantageous to have the higher value of the modulus of ri- 

gidity of the core in the tangential direction rather than in the longi- 

tudinal direction. The effect of the interchange of these values is evi- 

dent from a comparison of the curves shown In figures 6 and 7« This ef- 

fect is negligible in the case of cylinders having strong cores as evi- 

denced by the fact that the values given in Tables 5 and 6 are essentially 

the same.  The fact that in all cases the overall stiffness properties of 

the core become relatively more important as the length of the cylinder 

d.ecreases may also be noted.  As the length of the cylinders is increased, 

the values obtained for the critical loads approach the values previously 

obtained on the assumption that the cylinder length is infinite.  This is 

to be expected because, if \ is allowed to approach zero, the character- 

istic determinant for this problem reduces to the determinant obtained on 

the basis of the assumption of infinite length.* As the cylinder de- 

creases in length, the value of the critical load approaches the value 

G^j (l - —) and then falls off rapidly to zero.  In any particular case. 

if E is set equal to infinity, the critical load becomes equal to 

G 0 (l - —) when the length becomes zero. This limiting value for the 
To a 

critical load is characteristic of stability analyses of sandwich con- 

struction in general, if E is assumed to be infinite. Examination of 

the curves shown in figures 6, 7, and 8 shows that the curves represent- 

ing the cylinder having a weak core reach a maximum in the neighborhood 

*See Ref. 2. 
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0 
of — » 1 while those representing the cylinder having a strong core con- 

tlnue to rise until the cylinder becomes very short. Indications are 

■ 

that analyses based on the assumption of E = <» are Bufflolently accurate^ 

In most ranges, but for relatively short cylinders having weak cores auch 

an assumption may result in serious error. 

Conclusions 

The stability analysis of sandwich cylinders subjected to uniform 

external lateral pressure presented here is believed to be sufficiently 

accurate for use In design.  The assumption of membrane facings limits 

the range of applicability of the results somewhat since the effect of 

the stiffnesses of the individual facings may be appreciable in some sand- 

wich cylinders, particularly short cylinders having relatively thick fac- 

ings. However, for cylinders of usual sandwich construction and with a 

length equal to or greater than the radius, this theory is believed to 

be adequate.  The analysis of the problem with the stiffnesses of the 

facings taken into account may be performed without a great amount of 

additional work, and such an analysis is planned for the near future. 

Additional curves giving the values of the critical loads for a greater 

number of values of the parameters entering the problem are desirable 

for design purposes. Such curves may be easily prepared in the future if 

the time and expense involved in their preparation seem justifiable. The 
... 

Forest Products Laboratory is at present planning a series of tests for 

the purpose of correlating the results with the theoretical results ob- 

tained here. 
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Table 1. Values of Critical Pressure Expressed in Terms of ct. 

Et 

■ir a 

i 

^ = .95 
a 

0 
0.25 

:    2 
»          11 

.1*0 .          " 

• 50 ■          " 

.50 :    3 

.60 *         H 

.80 ,         II 

1.00 11 

.80 J» 
1.00 II 

1.20 tr 

i.ko ti 

1.60 M 

1.40 5 
1.60 tl 

1.80      : II 

1.80      : 6 
2.00      : ft 

2.25      : tl 

2.25      : 7 
2,62      : It 

0.00273 
.00292 
.00373 
.001*96 
.0056U 
.00588 
.00673 
.00826 
.00768 
.00808 
.00869 
.00956 
.0107 
.00950 
.00995 
.0105  : 
.010h 
.0107 
.0112 
.0110 
.0115 

P 

_fc 
^re 

is = 10 

2.62 :        8 :    0.0114 
5.15 

•                 II :       .0119 
5.15 :        9 :      .0117 
3.15 :      10 :      .0116 
3.15 :      11 :      .0115 
3.15 :       12 :      .0115 
3.15 •      13 .0115 
3.15 lit .0115 
3.50 13 .0115 
3.50 lit .0115 
3.50 15 .0115 
4.00 15 .0114 
It .00 16 .0114 
U.50 16 .0113 
1+.50 17 .0112 
U.50       : 18 .0112 
lt.50      : 19 .0112 
It .50      : 20      : .0112 
5.00      : 20       : .0110 
6.00      : 21      : .0106 

10.00      : 23      : .00930 
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Table 2. Valuos of Critical Pressure Exprossed in Terms of d. 

,  qcr a (1-n
2) 1 

Et 

IT a 
i 

c 
Ore 

.98 10 

: n -ct -ot 

0 !     2 :    0.000522      : :    2.25 :    7 :    0.00it03 
0.0525 >     " s      .000523      : 1    3.15 

11 t      .00552 
.25 .     « !      .000677      : :    2.25 :    8 :      .OOUOl 
.40 .     •< !      .OOlhk        : !    3.15 *         ft t      .001*88 
• 25 5 .00121        : •    3.15 '    9 .00^61 
.1*0 n .00129        : 3.15 10 .00^50 
.60 ft .00160        : 3.15 11 .001*1*7 
.80 11 .00256 3.50 12 .OOU58 
.ko k .00163       : 5.50 13 .001*58 
.80          i tl .00213       : 3.50 lit .001*57 

1.20          ! .00299        : U.00 15 .001*62 
1.20    .    ': 5         ! .0026!|        :          : 4.50      ! 16        ! .001*71 
1.60           : K                   t .00551        :          ! lt.50      : 17        ! .001+70 
1.60          : 6         ! .00339        :          : it .50      ! 18         ! .001*69 
2.25          : tl         , 

.001*59        :           : 6.00      : 23         ! .001*60 

I 
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Table 3» Values of Critical Pressure Expressed in Terms of a. 

rf_ gcr a (1-n ) 

Et ß= 1 

ira 10 
re 

b = .95 
a rz 

-d -a 

0 :    2 :    0.00190      : 1.20 :     5 0.00492 
0.25 •         '■ :      .00209      : 1.20 :     6 .00483 

.ko •        H :      .00290     : 1.20 t     7 .00483 

.50 •        '* :      .001*13     : 1.40 :      8 .00493 

.ko :   5 :      .00327     t 1.40 :      9 .00490 

.50 >    " t      .003^3     t 1.40 :    10 .00490 

.60 •    ■' s      .00368     : 1.40 :    11 .00488 

.80 •    ■* :      .00458 1.40 :    12 .00488 

.80 :   i» .00426     : 1.60 :    16 .00485 
1.00 •    " :      .00^72     1 1.60 :    17 .00485 
1.S0 <    •• :      .00543     : 1.60 :    18 .00485 
1.00 »   5 :      .00462      t 1.80 :    18 J .00477 
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Table k.    Values of Critical Pressure Expressed in Terms ofd . 

„,  Icr a d-^) 
Et 

TT a 
i 

.98 

P= 1 

j£ = 10 
,Gre 

rz 

X :    a :          -d.            t :      X :    n 1     -a 

0 !     2 •    0.000lt32      : :    1.20 •    6 1    O.OOI77 
0.25 •         " .000586      : !    1.60 tl :       .00212 

.Uo •         " .00155        s t    I.60 7 !          .OOI98 

.1*0 :    5 .OOOS^S      : 1.60 8 .00191+ 

.60 :    " .00126          ! 1.60 9 1     .00193 

.80 i    " .00201        : 1.60 10 .00193 

.60 :    k .00126        1 1.60 11 .00193 

.80 •          '* .0011+6        : 2.00       ; 13 .00198 
1.00 8      "        ' .00179        : 2.25       ! 16 .00197 
1.00 :    5      : .00163        : 2.25      : 17 .00197 
1.20 !     "       : .00181+        :          . 3.15       ! 25          ! .00196 
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Table 5«    Values of Critical Pressure Expressed In Terms of a, 

r 

d  a 
qny a {X-£2 

ß = 1000 

X = Li 
i 

^ = .95 

E  c 
3r0 

Is. 
rz 

= It 

10 

\ :    n :    -d               i :       X :      n !    -d 

0 :    2 :   0.00394     : :      4.50 :      5 :    0.118 
0.25 •    " :      .00420      1 :      4.50 :      6 :      .117 

.1*0 :    " :      .00510      t !      5-00 .       n '      .139 
•50 .    " t     .oo64o     1 6.00 1       n :      .194 
.60 !      " :      .00852     : 6.00 •   7 !         .193 
.75 !      " :      .0157       : 7.00 •   " .257 
.60 3 :      .0117       : 7.00 !         8 .258 
.75 II :      .0126       : 8.00 It .332 

1.00 II .0151       : 9.00 ,         It .42? 
1.20 tl .0182       : 8.00 9 .335 
1.40 M .0224       : 9.00 II .419 
1.60      : tl .0279       :          ! 10.00 II .524 
1.80      ! II .0347       :          ! 10.00 10       i .517 
1.80      ! k .0315       :          : 11.00 If         4 .634 
2.00      : .0352       :          : 11.00    : 11      : .627 
2.25      : ir .0406        :           : 12.00 It .755 
2.62       ! n .0505        :           : 12.00     ! 12      : .748 
3.15      : "         . .0690        :           : 13.00     ! II              , .838 
2.62       : 5      . .0540        :           : 13.00    : 15       : .881 
3.15      : M             . .0667        :           : 16.00    : M            , 1.12 , 
4.00      : .0953        :           : I- 
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ible 6.     ValuBa  of Critical rrosaui'o K;;ri'üü;iäd  in Tcvnia  as" «, 

Q.cr a   (l-tJ-" 

Et. (3 =  1000 

X'« 
IT a 

= .98 

'A) 

-J£. = 10 
5rz 

- d 

0 
0.105 

.25 

.1*0 
•50 
•50 
.60 
• 75 

1.00 
1.00 
1.20 
1.1+0 
1.60 
2.00 
2.00 
2.62 
3.15 
3.15 

0.000612      : :      lt.00 :      6 :    0.0197 
.000620      : :      5.00 •             " :       .0292 
.000771      : :      5.00 !       7 :       .0265 
.00153        : :      6.00 1             " :       .0361 
.00272         : '  6.00 8 .03H9 
.00189        : 7.00 fl .0I152 
.00209        : 7.00 9 .01*1+8 
.00261        : 8.00 tl .0562 
.001*22        : 10.00 II .0876 
.00386        : 8.00 10 .0565 
.OOhhk        : 10.00 it .081+3 
.00526        : 10.00 11 .0836 
.00637        : 12.00 ti .120 
.00953        : 12.00 12 .118 
.00798        :           : 12.00       ! 13      : .118 
.Oll»*          :           • 15.00      : 15      i .181 
.0156          :          ! 15.00      1 16      : .181 
.011*0          : : 
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Table  7.    Values  of Critical Pressure Expressed in Terras  of a. 

P = 1000 d = 
qcr-S (i-M*) 

Et 

.95 

E  c 

E 

10 

£ = k 
rz 

X :    n :             -a      : t          x J      n :      -« 

0 :    2 :   0.0039h     : :      5.15 :     5 :   0.0665 
0.25 •    " :       .001+20      : :      1+.00 • :      .0951 

.ho t    ** :      .00510      : :      lt.50 1      " ;      .116 

.50 ,    it i      .0061+0      : !      1+.50 :      6 :      .117 

.60 ,    H I      .00852      : !     5.00 :      " :      .158 

.75 •    " !       .0157        s :      6.00 •      n !     ■ .191* 

.60 :    5 :      .0116 !      6.00 :     7 !        .193 

.75 .    " .0126       : 7.00 •      " .257 
1.00 ,    it .0151       : 7.00 !      8 .258 
1.20 ,    ii .0182        : 8.00 !        " .532 
i.ko .    " .0221*         : 9.00 " .1+28 
1.60 #    ,f 

.0279        : 8.00 9 .33^ 
l.8o •    " .031+7        : 9.00 "      1 .1+19 
1.80 l    k .0515        : 10.00 "      : .526 
2.00 i    "      : .0552           ! 10.00 10      :" .517 
2.25 •         !I            < .01+05           t               '. 11.00         ! 11      , .635 
2.62 •        It            # .0501+       :          ! 11.00        ! 11      : .626 
5.15 8    "      :' .0689       :          : 12.00      : II             , 

.757 
2.62 8    5      : .0558        :          : 12.00      : 12      : .7^7 

v% 
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OUTER   FACING 

CORE 

INNER FACING 

Figure 1.--Sandwich cylinder. 
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qa(l-k) 

qa(l-k) 

Figure 2.--Differential elements of core and facings before buckling. 
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qfk 

Tr^Sgfd! 

7"  ^ ^Trz   . 

de 

Figure 3.--Differential element 
of deformed core, 

WADD IE 6O-I33 254 

■ 

v_ 



qa(l-k) + Ne       „ 

qak + NQ 

*    dz 
qkf(0-r)r=a 

q%k+(a-r)r:b 

N.^d: 

C1      qak+N^^de 

INNER   FACING 

^    qa(l-k) + Ne + ^de 

OUTER   FACING 

Figure  U.--Differential elements  of deformed  facings. 
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Figure 5.--Cross-section of buckled cylinder, 

(for n = k) 
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SECTION VIII 

DESIGN CURVES FOR THE BUCKLING OF SANDWICH CYLINDERS 

1 
OF FINITE LENGTH UNDER UNIFORM EXTERNAL LATERAL PRESSURE- 

By 

CHARLES B.   NORRIS,   Engineer 
JOHN J.   ZAHN,   Engineer 

Forest Products  Laboratory, — Forest Service 
U.   S.   Department of Agriculture 

Sumnary 

This report contains curves and formulas for the calculation of the critical 
external pressure of sandwich cylinders of finite length.     The facings of the 
sandwich are equal and Isotropie and their individual stiffness is not taken in- 
to account.     The core is Isotropie or orthotropic having natural axes in the 
axial,   tangential,   and radial directions of the cylinder.     Curves are given for 
Isotropie cores and for orthotropic cores having certain relative elastic proper- 
ties.     If the cores are very rigid,   the method yields  results that are substan- 
tially those of von Mises. 

Introduction 

This report presents design curves for the critical external pressure on sand- 
wich cylinders,   calculated according to the formulas developed in Forest 

—This progress  report is one of a series  (ANC-23,   Item 57-3) prepared and 
distributed by the Forest Products  Laboratory under U.   S.   Navy,   Bureau 
of Aeronautics Order Nos.   NAer 01898 and U.   S.   Air Fotce Contract No. 
DO 33(616)58-1.     Results here reported are preliminary and may be re- 
vised as additional data become available. 

2 
-Maintained at Madison,   Wis. ,   in cooperation with the University of Wiscon- 

sin. 
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3 
Products  Laboratory report  1844-B  (9). —    The  sandwich cylinders have iso- 
tropic facings  and orthotropic  or isotropic  cores.     The natural axes of the 
orthotropic cores are axial,   tangential,   and radial.     These formulas reduce 
substantially to those developed by von Mises   (7,    10,    14) when the core is 
very rigid so that the  stiffness  of the  spaced facings  of the  sandwich (no re- 
duction of the  stiffness  due to shear strains  in the core)  can be used as  sug- 
gested in 3. 1. 5  of ANC - 23  {J_l_). 

A great deal of investigative work has been done on isotropic cylindrical shells 
subjected to external pressure  since report  1844-B giving theoretical analysis 
of sandwich cylinders  was written.     It has been found that experiment some- 
times yields critical loads that are less than those predicted by von Mises' 
theory  (13).      This has  been attributed to two causes.     First,   the  experimental 
cylinders contained imperfections that lowered the critical load (1,   2,   3,   8, 
12).     Second,   lower  energy levels are associated with post-buckling configura- 
tions  of the cylinder than with those just at buckling,   the former being  reached 
without the necessity of passing  through  (snap-through) the latter or the energy 
necessary for passing  through the latter being  supplied by vibration or shocks 
(4,   5,   6,   8). 

The curves published in this  report do not consider  snap-through buckling or 
cylinders  with imperfections.     Sandwich  cylinders,   however,   are much more 
perfect than their  solid counterparts because they are thicker and the effect 
of an imperfection is  in proportion to the  ratio of its  amplitude to the thick- 
ness  of the cylindrical   shell.     Also,   the  curves  neglect the stiffnesses  of the 
individual facings.     These stiffnesses  add a  considerable amount to the criti- 
cal loads  when the cylinders  are  short,   and it is for  short cylinders  that  ''snap- 
through'! is likely to occur (6).      Thus  it   seems that these curves are useful in 
the design of sandwich  cylinders. 

Development of Formula from which 
Design Curves  Were  Calculated 

The critical external pressure  is  found by placing the determinant on page 23 
of report No.    1844-B  (9)  equal  to  zero and solving  for  a.     This  determinant 
can be simplified if the  transverse modulus  of  elasticity of the  core  (Ec) is 
assumed to be infinite.     For  most core  materials   except possibly for       low 
density foams   E     is  sufficiently large  so that this  assumption yields  values  of 

the critical pressure that are  only very slightly too great. 

3 : "~ 
Underlined numbers  in parentheses refer to the  references. 

WADD ra 60-133 262 



Before Ec is allowed to approach infinity,   the first and fourth columns of the 
GRZ determinant are multiplied by  and the third column is divided by Ec. 

c 
Then when Ec approaches infinity,   the expressions in rows 3,   4,   5,   and 6 in 

column 3 approach zero. 

r 

The expressions in each row,   excepting the first,   are replaced by new ex- 
pressions,   as indicated by the following formulas in which R represents   the 
expression in the row designated by its subscript and in some column.     The 
primed values are the new ones to be substituted for the old.     These substi- 
tutions can be made without changing the value of »because of the well-known 
properties of determinants and because the determinant is  equated to zero. 

„2. 
R- R2;T+R1 

R3    = R3 + ^2 

R4   =R4 + R2 

R5'  = 2R5 + (n2 + 3\2) R^ 

R^  = 2R6 + (n2 + 3 ^- \2) R2' 

These substitutions cause the expressions in column 3 and rows 2,   3,   4,   5, 
and 6 and those in column 6 and rows 3,   4,   5,   and 6  to become zero,   and the 
determinant is  readily reduced (by minors) from a 6-by-6 to a 4-by-4 deter- 
minant.     This determinant is simplified slightly by replacing the second row 
of expressions by the second row minus the first row. 

After the determinant was written in this form,   a change in parameters was 
made using the following nomenclature: 

R -- mean radius of the sandwich cylinder 

h -- thickness of the sandwich 

c  -- thickness of the core of the sandwich 

n -- number of half waves in the circumference of the cylinder 

_ GRz 
GRe 

h 

r 4; 
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V = 
E t 

(1  - ^) G       h 

K = a 
q(l   -   ^^ h 

where GQ    and GRQ are the moduli of rigidity of the core associated with the 

radial and axial directions and with the radial and tangential directions; E, \i, 
and t are the modulus of elasticity, Poisson's ratio, and thickness of the fac- 
ings;   and q is  the external critical pressure on the cylinder. 

The radii a and b were eliminated by the following equations obtained from the 
geor   etry of the cylinder: -■    » 

a = R + - (h + c) 

b = R - 1 (h + c) 

and the following substitutions made: 

4R 
*. 

<*>   = 

h 

h + c 

The expressions in the final determinant are: 

Row 1,   column   1 

n2 -  1  $ + (p 

n <3? - c() 

Row 2,   column  1 

2 V 

$ + <|> 
__rrf_/R\2   4 + 4> Y 
3nHi/     V*   y 

1        2$ 84* 

n2 9 - $        «^-c})2 

Row 3,   column  1 

n"  -   I     24) 

$ - <+) 

2 

n2 + 3i '2 e) (^ 
n2   \1/     \   * / 

$2       ^ 

2     *2-4>2 
K 

t 
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Row 4,   column I 

n^- -   1      2<t> 

n        * - t)> 

.2    /^2 

"^^(Tn^i-^^eJtr 
n2   \i/     \   $   / 8$ 

K 

Row 1,   column 2 

'"2-')ii^K^-»2-4(!)2(i7i); 

Row 2,   column 2 

24» 

Row 3,   column 2 

^-^^^(f)^; 

n2-l 2'-
2 

^2 *2 

(f)2 (^j2 *'" 
(n -^-^-^T^^11 +37r W ("77. 

l;      8*        K 

2" 

Row 4,   column 2 

\2    A.  .    ^2 
Zv (RY    f*+4>Y nZ -  1   g - 4»   ,     2/Rf   (^- «t»)     ,   /n2      n ^-4.2 

8* 
K 

+ (n2.1)ü±±}!4±4K 
4$ i^  - 4)': 

n" + Sw' .2.,   2^    /« 
$ 

Row 1,   column 3 

24>      .     4       V log $ - 4) 
$+4)       3r'l>+4) $ + 

Row 2,   column 3 

8        V      , $ - 4) 
    log 3r$+4)       &$+4) 
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Row 3,   column 3 

- 2+  -*L n2 + 3 

+   377 

Row 4,   column 3 

/R\2 ^ 

-1   v 

3r   # + <() 

log  X. 
* + 4», 

4        V 
3r $ + 

+ 3 •2(f) 
2    ^^^ $ - * log — — 6 * + (}> 

Row 1,    column 4 

^2    /„X2 „2.Z1   /R^   /W-^V 
3     \W     V    *   / 

Row 2,   column 4 

2    ,„\2 

•¥(f)2 

Row 3,   column 4 

$   / 

V2 

477 
R\2   /$+ 4.V   ^2 

+ 3 - [j) r*-j 

2 2 

3  '      16* K 
3    W     ~^2- 

Row 4,   column 4 

.2     . .2 
1   _   (g -^ 6)' 
3 16« 

2" 

W   V * / 
This determinant was placed equal to zero 

2n2   /R\2 $
2 + ^^ 

3      W/    ~I2 

and values of K determined by an. 
a ' R c electronic computer for various values of —,   n,   V,   —,   and —. 

R h h 
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The limits  of these  curves for very long and very short cylinders may be 
found from Forest Products Laboratory Reports  1844-A and 1844-B (9).     For 
infinitely long cylinders having membrane facings and for which the modulus 
of elasticity of the  core.in the radial direction is  infinite,    equation (72) of 
Report 4~844^A becom-es r.; 

K = 3 (*- 4») 4» 

2 (<&2 + <},2) 
"$2 - 4) 2    ,                 Et 

16*          GRe (1  - ^)h 

For very short cylinders having membrane facings and for which the modulus 
of elasticity of the core in the radial direction is infinite,   the equation on page 
28 of report 1844-B becomes: 

K = 
2$     GR9 (1  -  fO h 

$ + <J) Et 

From this  equation the critical hoop compression per unit length of cylinder 
is found to be: 

Ne = i (h + c) GRe 

which is the usual limit imposed on the edge compression of sandwich con- 
structions with membrane facings by the shear instability of the core. 

Description of Design Curves 

The design curves  (figs.   1  to 6) apply to sandwich cylinders having equal Iso- 
tropie facings and isotropic  cores or orthotropic cores having thin natural 
axes parallel to the axial,   tangential,   and radial directions of the cylinders. 

They are plots of K against — where the critical pressure is given by R 

Et 

( 1  -.^)h 
K 

and E,   \J.,   and t are the modulus of elasticity,   Poisson's ratio,   and thickness 
of the facings;   h the thickness of the sandwich;   i and R the length and mean 
radius of the cylinder.     Six curve sheets are presented,   two for each of three 

R values  (10,   50,   and 100) of One of each pair of curve sheets applies to 

: 
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sandwich having  very thin facings for which the  ratio of the thickness  of the 
core to the thickness  of the sandwich (c/h) is  substantially unity.      The other 
applies  to sandwich for which this   ratio is  0.7.     Each curve applies  to sand- 
wich having a particular  value of: 

V 
E 

^ " ^ GRe 

where GRfl is the modulus of rigidity of the core associated with the radial and 
tangential directions of the cylinder.     It was found that the modulus of rigidity 
of the core associated with the radial and axial directions (GDZ) has very little 
influence  on the critical pressure.      It does  not enter the formulas for the criti- 
cal pressure of very long or very short cylinders.     Calculations were made for 
cylinders  having three values of 

Rz 
R Re 

These values were  2.5,    1.0,   and 0.4 to agree with the values appropriate for 
some honeycomb and Isotropie core materials.     Many of the curves are not 
affected by the use of these values.     Some of them are affected slightly.   This 
is   shown in the figures by the use of three  adjacent curves;   the greatest,   in- 
termediate,   and least values  of K are associated with the greatest,   intermedi- 
ate,   and least values of r. 
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